Updated for ‘lu'hn 'Pnn_.[]gsn[]n

PureBasic 4.61 & 5.0

Derlidio CLUSigueira
NSNS T

Programming 2D Scrolling Games

Updated for PureBasic 4.61 & 5.0

Copyright © 2005-2014 John P. Logsdon
All Rights Reserved.

No part of this publication may be reproduced in any way, stored in a
retrieval system of any type, or transmitted by any means or media,
electronic or mechanical, including, but not limited to, photocopy,
recording, or scanning, without prior permission in writing from both the
author and publisher.

Programming 2D Scrolling Games
Authors: John P. Logsdon (“Krylar”)
Derlidio Siqueira (“PJoe”)
Graphics and Cover Art: Ric Lumb (“Putty”)
Game Music: Steve Harrison (“Fash”)
Editing: Lorelei J. Logsdon ("Soeth")

All brand names and product names mentioned in this book are
trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks should
not be regarded as intent to infringe on the property of others. The
author and publisher recognize and respect all marks used by
companies, manufacturers, and developers as a means to distinguish
their products.

Programming 2D Scrolling Games by John P. Logsdon & Derlidio
Siqueira is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

You may copy, update, distribute, and transmit this work for non-
commercial purposes as long as you give attribution to the original
authors, provide a link to my website at www.johnplogsdon.com, and
distribute the resulting work under the same license as this one.

Visit me on the web

www.JohnPLogsdon.com

http://www.johnplogsdon.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://www.johnplogsdon.com/
http://www.johnplogsdon.com/
http://www.JohnPLogsdon.com/

PART 1: PUREBASIC BASICS 9

CHAPTER 1: WELCOME TO PUREBASIC....cciiuviiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiienn 12
What is PureBasic and who is this BOOK fOr?...........ccoooovvvvviiiiieiiiiiieenn.. 12
Why Learnn PUréBaSIC?.........oooovvviieeiiiiiiiiiiiiiiiiiiiiiiiiiieeiiieieeeeen 13
What Will I Need to Run PuréBaSiC?.........oooovoveeeeiiieiiiiiiiieiiieeeeeenn. 13
The Major Sections Of thiS BOOK...............ccoooooovvviieeiiiieiiiiiiiiiiiiieeeeeeennn. 13
Conventions Used in this BOOK............ccooooeeveieeeiioiiiieiiiiieieieiieeeeeen 14
Where can I get the SOUFCe2........oooovveweeeeeeeeeiieeieeieeieeeeeeeeeeeeeeeee 15
What if there are errors in the book or code?...............coooveovvvievveveannnn...... 15

CHAPTER 2: FUNDAMENTALS OF PROGRAMMING ...uvviiiieiiiiiiiieiiiiiiiiieiiiiiiiiennn. 16
What iS @ PYO@VAIA? ..o 16
Object COAC....vvvooviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee 17
BitS @A BYLOS....ooooooooiiiiioiiiiiiii e 17
Screen Resolutions and Bit-Depth...............ocooovvoevveieeeiiiieiiiieeeiieeeeeeeennn.. 18
Speed Impact of Higher Resolutions and Bit-Depths...............ccoovvvveveeeen..... 19
DirectX, Peripheral Cards and Drivers...............ccooovoveveeieeeeiiiiiieeeeeeeen...... 20
Creative and Technical Design DOCUMERALS.................coooovviveeeieiiieiieeennnn.. 21
Good Coding Style and COMMENEING.............ccovoeeevieiiieiieiiiiiiiiiiiiiienne. 22
APIACC 1O WOPK ..o 23

CHAPTER 3: GETTING STARTED WITH PUREBASIC....vvviiiiiiiiiiiiiiiiiiiiieiiiinn 24
The Good Old “Hello, World!” Program..................c...oooovvvvevvvveeeeeeeenn.... 24

CHAPTER 4: THE BASICS OF PUREBASIC....cuviiiiiiiiiiiiiiiiiiiiiiiiiiieeiiiee 30
Variables, What Qre they?..........oooovevoeeeeeeeeoieieeeiieeieiieiieeeeeeeeeeeeeeen 30
Defining Variables...............cooooooovveiiieoiiiiiiiiiiiiiiiiiiiiiiieiieiiieeiee 33
Commenting Your COA@.............coooviievioeiiieeiiiiiiiiiiiiiiiiiiieiieeeie 36
Simple AVERI@LIC. ..o 38
Cartesian COOVAINALES...........ooooeeeeiieiiiieiiiiiiiiiiiiieiieeeieeiieeeee 39

CHAPTER 5: PROGRAM CONTROL STATEMENTS. ..0ceouuiiiiiiiiiiiiiiiiiiiiieeiiiiiiiiieeeeenen, 42
If Else. . EndIficoooooooooovoiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiieee 42
Nested IF StQteMENLSooocovveioeeeeiiiiiieiiiiiiiiiiieeeiieeeeeieieeeeenn 45
Elself StQtement..........o.ooooeooooeeoiioiiiiiiieeiieeeeeeeeeeeeeeeeeee 46
And and Or StAteMEnES.c..ooooveoeeeiiiiieiiiiiiiiieiiieiiieieeieieeeen 46
The SELECT StAtEMENL.........oooooovoeiiiiiiiiiiiiiiiieieeeieeee 48
LOOD BASICS. .o 49
For..Next LOODS.c.oovvviiei 50
While...Wend LOODS.coooovvieeeiieeiiiiiiiieiiiiiiiiieeeeeeeeeeeeen 53
Repeat... Until/FOVEVerooooeooooieiiieiiiiiiieiiiiiieieeeeeeeeen 56

CHAPTER 6: UNDERSTANDING/USING ARRAYS...vviiiiueiiiiiiiiiiiiiiiiiieeiiiiiiieeeenn. 59
What Arrays LOOK LiKe............ooooovvoeoeeeiiiieiiiiiiieiiiiieieieeeieeeeee 59
Initializing an Array (the DIM command)..................ocooooovveeeveveieeeeieeeer...... 60
MultidimenSional AVPAYS..........cooovvoeeveieiiieiiiiiiiiiiiiiiiiiiiieiiieeeeeee 62
Re-dimensioning Avrays.............coooveeeviiiiieiiiiiiiiiiiiiiiiiiieiiiiieieeeeen 65
Loading Data Values into an Arr@y................cooooovvviveeveiiveeiiieiiieeeeenne. 66
Variable Length Data StQtEMENES.covooevvveeiieeiieiiiieiiiiieiieeeeeene. 72

CHAPTER 7: UNDERSTANDING/USING STRUCTURES. ...0veeiuiiiiiiiiiiiiieiiiieiiieenneee 74
Arrays Of SUCTUI@S ..o 74
Arrays Within SHUCHUF@Sooooveeeeeeeeeeeeiieeeieieieeeeeeeeeeeeeeeeeeeeeeeeennn 78

Basic Structure LISES.......oovovvvoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeiienn 79

Advanced Operations — Extending Structures...........oooooeeveeeeeeeeeeeveeveeeeenn..... 84

Advanced Structure Operations — POIREErS..............cc..ooovvevveeviiiiiiiieeenn.. 88
Other List COMMANAS..........ooooooieeeiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiieeee 92
CHAPTER 8: WORKING WITH MEMORY ,.uuviiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiiiieeeiann 94
Creating and Freeing Memory Buffers..............cccooooovveiieveiieeeiiieeeieeeeennn... 94
Poke and Pe@k...................c.ooooovvoiioooiiiiiiiiiiiiiiiii 95
Resizing Allocated MemOry..........ooooeeeeoeeeeeieneiiioeeeeeieeeiieeeeeeeeeen 97
Copying Memory BUffers..........ooowweeeeeeeeeeiieiiiiieiiiiieieieeeeeeeeeeeen 99
Comparing MEMOVY............cccovovoveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiean 101
String-Specific COMMANAS.............coooovveieiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiaa 103
CHAPTER 9: PROCEDURES AND LIBRARIES.....uviiiiuiiiiiiiiiiiiiiiiiiiiiiieeiiieeeiieannn 107
Declaring a Procedure................ooooooovoveviooeeoiiieiiiieeiiiiiiiiiiiiiiiiivveeennn 107
Passing Arguments and Returning ReSults...............ccooooovevveeeeiveeeeeeeeeeen..... 110
Including Files............cco.ocoovvooeeoiiioiiiiiiiiiiiiiiieiiiiiiiieeeieeeeeeeeeeiee 114
LiDPQATECS .o 115
CHAPTER 10: WORKING WITH FILES..00eiouviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiieiieiann, 119
Creating @ File.............cooooovvooviiivoiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieeee 119
Writing t0 @ File..........coooovoovoiieiiiiiiiiiiiiiiiiiiiiieieieieee 120
Reading From @ File..............ooooovvivvoiiiieoiiiiiiiiiiiiiiiiiiieiiiiiiiieeieen 122
Moving Around InSide Of FileS.............ccoocovoovviieiiieiiiiiiiiiiiiiiieiiiieenne. 124

A Quick Binary EXAQmple..............cooooovvioveviiiiiiiieiiiiiiiiiiiiiiieeiieiiiee. 127
Miscellaneous File COMMANAS...........oooooeveeiieeeiiiiiiiiiiiiiieeiiieiee 129
PART 2: PB GAME TOOLS 131
CHAPTER 11: COLORS AND DRAWING PRIMITIVES..eouvvieiiiiiiiiiiiieiiiiiiiiiiiiieeienne. 134
Getting and Setting COIOVS.............covvveviieiiieiiiiiiiiiiiiiiiiiieiieeeeeee 134
Dealing With PiXelS.............cccoocoooooviiiiiiieiiiiiiiiiiiiiiiiiiiiiieeiiiieeiee 135
Drawing LiNesS.........c....ooovoovvviieiiiiiiiiiieiiiiieene 137
ReCtangles............oocvvoevieeeiiiiiiiiiiiiiiiiiiiiiiiee 140
Circles and EIIPS@S..............ccooooovveviieiiiieiiiiiiiiiiiiiieiiieieeeeeeeee 142
CHAPTER 12: WORKING WITH SPRITES....0eeiiuuiiiiiiiiiiiieiiiiiiiiiiiiiiieeiiieeeeeeeeinnnn, 143
Basic Loading and Displaying of Sprite€s........oooooeeeeveeeeeeeeeeieieeeieeeeeenn.... 143
Rotating an Image to Make Multiple Frames......................coooovvevvvvveneeer...... 146
Writing direCtly 10 @ SPFIte..........ccoveovviieeiiceiiieiiieiiiiiiiiiiiiiieeeeeee 152
CHAPTER 13: HANDLING ANIMATION. ..00iiutiiiiieiiiiiiiiiiiiiiiiiieeiiiieiiieeeiiieeeeeenns 154
Page Flip ANIMQLION. ... 154
Animating IMA@ES..............oooovvviieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiieeeeieee 158
Animation Timing.coovvveeiiiiveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieieeeeeeeeee 162
CHAPTER 14: COLLISION DETECTION. ...vviiiitiiiiiiieiitiieiiiieeiieeeiiieiieeeeeeeiaenn, 166
Bounding Box COIISTONS.........ooooeeieoeiiiieiiiiiiiieiiiiieeeieeeeeeeeeeeen 166
Pixel-Perfect Collision DeteCtion...............oocoovvvveeeiiieeeiiieiieeiieeeeen.. ... 171
CHAPTER 15: HANDLING INPUT...eeiiiiiiiiiiiiiiiiiiiiiiiiiiiieciieeeeeiiieiieeieee 176
Using the Kevboard.................c..ccoooovvieeviiiiiieiiiiiiiiiiiiiiiiieiiiieeieeeenn 176
USIiNG the MOUS@.........ooooooooooeeoiiiiiiiiieiiiiiiiieieiiiieiieeiiieeeeeeeeae 177
Displaving a Custom Mouse CUFSOFocvvoeeevieeeiieeeieeiiiiiiiieieeienne 181
USIiNG the JOVSHICK.ccooooooooiioiiiieiiiiiiiiiiiiiiiieeiieeieeeeieeeeeeeeen 182
CHAPTER 16: SOUNDS AND MUSIC...uvviiiiiiiiiiiiiiiiiiiiiieeeieeeiieeieeeeeeeeeeeen 186
Loading SOURS...........oooooveeiooieiieeiiiiiiiieiiieieieeeeeeeeeieeeeeeeeen 186

Manipulating SOURAS.......oooooooooiiiiiiiiiiiiiiiiiiiiiieiiiieieeieeeeeeeeeee 188

Multiple Sounds Playing Simultaneously...........oocooovveveeeeeeeeeeeieieeeeeenenn... 193

Loading Sounds into MemoOry............c.ccoooovvveeviiiiiiiiiiiiiiiiiiiiieeennn 194
Overlaying Multiple SOUNAS................ocoovvvioeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeen 197
Playing MUuSIC............ocooooovviiiiieiiiiiiieiiiiiiiiiiiiiieeieeeieeeeeeeeeeee 202
Music MOAUIES............oooovoooiooiiiiiiiiiieiiiiiiieieieeeeeeeee 203
CHAPTER 17: TIMERS..e.uviiiiiiiiieiiieeiii et eeeeeeeenan 205
Frames per Second (FPS) Tracking............oooooooovveeeeeeeeeeeeieeeieeiieeeeeenn.... 205
The ROIING Tiler ..o 207
Locking in at Re@l Time.oooovvoeviieiiiiiiiiiiiiiiiiiiiieieeeeeee 210
PART 3: 218
MIGZ CALLO: LASER BLAZER......cccccceeveesurerneearesaneassrcsaseasssessacansassaseanases 218
CHAPTER 18: GAME DESIGN...uuviiiiiiiiiiiiiiiiiiiiiiii it 220
Background StOVY..........ocoooooovooiiiiiiiiiiiiiiiie 220
GAME FOATUICS ..o 221
APt ASS@E LEST oo 221
Sound ASS@t LISt ..o 228
Music ASS@t LiST.....ooovovioeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeie e 229
Map ASSt LEST....ooooovvooeiiiiiiiiiiiiiiiiiiiiiiiiiiiieiie e 229
TechnicQl LiSt........oooovvviieeiiiiiiiiiiiiiiiiiiiiiiiieeeiiieeeeeeeeee 229
CHAPTER 19: Z-ORDERING....0eiiiuutiiitiiiiiiiiiiiieiiiiieeiiee et eiieeiiiiieeieeeeeeeienn, 230
What iS Z-OFdering?.............ocoovoeeviiieeeiiiiiiiieiiiiiieiieiiiieeiieeeeieeeeeene 230
Why Use Z-Ordering?..........cooooovvvooeooiiieeiiieiiiiiiiiieiiiiieeiieieieeeieeen. 231
How to Implement Z-Ordering............ooooooeeeeeeevoeeeeioeeeieeeeieeeeeeeeeeenn... 231
CHAPTER 20: LOADING MAP FILES...0vvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeiiieeiiee 235
LOAAING Til@S....ooooooioioiiiiiiiiieiiiiieee e 235
Text-Based Map File FOrmMQL...............oooovvvvviceiiieeiiiiiiiiiiiiieiiiiiiieenen 240
Loading Map DimenSions...............ccoooooeveieeviiiiiiiieiiiiiiiiiiiiiieeeeieeenn.. 240
Loading the Map DAt@...................cooovvoovviiieoiiiiiiiiiiiiiiiiiiiieiiie 242
Binary-Based Map Files..............coooocovoioeeiiiiiiiiiiiiieiiiiiiiiiiieeeenn . 244
Loading Binary MAPS.............oooovovooeoiiiieiiiiiiiiiiiiiiiiiiieeeeeeeeeeieen 244
Saving Binary MADS.........ooooovveeieiiiiieiiiiiiiiiiiieiiiiiiiieeeieiieeeeiieeeean 246
Showing a Loaded Map..................ooooovvvooeeiiieiiiieiiiiiiiiiieiiiieeeeennn . 247
CHAPTER 21: MOVING SPRITES ON SCROLLING MAPS....vveiiiiiiiiiiiiiiiiiiiieiiinann, 252
Player hits @ WalL............ccoooovvoeiiiiiieiiiiiiiiiiiiiiiiiiiiiiiiiieiiiee 252
Screen and World COOVdin@tes.............ccoovvvevevviveeeiiieeiiieiiiieiiiieeiieeen. 259
Scrolling a Map (TREOIY).......oovvooeeiieiiieiiiiiiiiiiiiiiieiieeeeeeeeeeea 260
Edge-Independent SCrolling...............coooooovvvvoeeviiieeeiiiiiiiieiiiiiiiieeeeenn.... 261
Scrolling CoAde..........oooooovooiiieiiiieeiiiiiiiiiiiiiiiiiiiiiieeieieieeeee 263
More on Coordinate SYStemS.ooooveveeeeeeieeeiieiiieieeeeeeeeeeeeieeeee 267
Screen Vs, WOrld.o.ocoooovovooiioeoiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeenn 267
Robots, HealthPaks, and Lasers...0Rmy!.............c..cccoooovvieviieieeiiiiineenne.. 269
CHAPTER 22: SIMPLE Al ..uviiiiiiiiiiiiiiiiiiiiiiiieiiiiieie et 271
Robots DOING ST oo 271
RODOLS FiliNG. o oo 273
Migz GetS BOV€d. ..o 275
Migz Falls ASICEP...........c.ooooooooeioiiiiiiiiiiiieiieeeeeeeieeee. 277

CHAPTER 23: PUTTING IT ALL TOGETHER......iiiiiieiiieiseeiiieieieeieeeeeeeeeeeeeennenss 279

The MATN LOOPD. ..o oo 279

Making a level for MiGzZ...........cocooooeveeiiiieiiiieiiiiieiiiiieeieieieeeee 284
Placing robots and healthpaks................ccoooooovvvvevvviiiiiiiiiiiiiiiiiveeeenn..... 285
Code for starting @ level..................ccoocovvoovvieeviiieiiiiiiiiiiiiiiiiieiiieeennn 287
The LiDFQFi@S.......ooocoovoooeooioioiiiiiiiiiieeeeieeeeeeeeeeeeeeeeeeen 290
CONCIUSTON . .o 290
APPENDIX e etitieeeeeeee ettt ettt ettt ettt et e e 292
LICENSE ettt 296

MY OTHER WORK . .1ttiiiiitittiiieeieeeieeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeiieeeeeeeeeveeeens 297

PART 1: PUREBASIC BASICS

Chapter 1: Welcome to PureBasic

This book is designed to get you started programming in one of the
most powerful basic-like languages available today. Taking you from
fundamental programming concepts to advanced techniques,
Programming 2D Scrolling Games will have you designing and
developing your own games in no time.

What is PureBasic and who is this Book for?

For years I had struggled in trying to learn the techniques that the
professional game developers used in their creations. I searched the
Internet and read numerous books, but while many of them certainly
provided terrific information, most were far over my head. Slowly,
through much persistence, I began to understand a lot of what went
into game development from a developer’s standpoint.

I've also had the very fortunate experience of being around some of the
best and brightest developers in the Game Industry, by having worked
in the capacity of Producer and Executive Producer at various online
game companies.

So with a ton of theory in my pocket, I started using my C programming
skills to get my games underway. Then the dreaded DirectX interface
got in the way. It's not that DirectX is super-complicated or anything,
but when you're developing as a hobby you don't want to spend months
learning how to use a tool that will only help you get to the first ring of
development.

I've since used many development languages on the market that were
written with the hobbyist in mind. PureBasic is such a language. But
don’t let that hobbyist tag fool you! Most people would find that a
language such as PureBasic is much more robust and powerful than
their own hand-coded routines in a language such as C/C++. Also, it's
far simpler to master.

PureBasic was developed with the intent of allowing both beginning and
advanced game developers to get their creations going without the need
to learn or use a ton of low-level coding techniques. PureBasic uses one
of the simplest languages as its base, BASIC. However, where BASIC is
an interpreted language (meaning that as the program runs, the
computer translates each line into machine language before executing
it), PureBasic compiles the code directly to machine language before
executing any lines. This means that a program created with PureBasic
will run without unnecessary steps that can slow it down.

Something equally important about PureBasic is that it's a REAL
programming language. I have seen a number of products that are
known as “Click and Play” game development systems, but PureBasic
requires that you use your imagination and coding-prowess to make

12

your dreams into reality on the computer. Coding-prowess is what I'll
be focusing on in this book, although I will touch on imagination and
game-play as well.

If you've never programmed before, you’ve come to the right place.
This book starts with the fundamentals of programming while
integrating the PureBasic commands needed to create your future
games. You will be guided into stronger elements that will all be used in
examples to help you gain full understanding of needed topics.

Why Learn PureBasic?

There are many languages out there that you could choose from, so why
pick PureBasic? The simple answer is that PureBasic will get you
developing your games and applications quickly. But it's also easier to
learn than most languages; you don't need to learn the underlying
Microsoft DirectX components, and you don’t have to code the majority
of image processing, collision, input, multi-player, or sound routines
that you would normally have to.

If you're a seasoned game developer, PureBasic will allow you to
prototype games quickly and easily without drastic speed loss and
inherent restrictions of a click-n-play type system.

Finally, PureBasic has game development as part of its function. C and
C++ are used in a lot of game development projects, but they were not
designed with programming games in mind. PureBasic was. Therefore,
when you start out with PureBasic you are in a language that supports
your goal of game development.

What Will I Need to Run PureBasic?

In order to run the PureBasic Integrated Development Environment
(IDE), you'll need to have a system running Microsoft Windows. While
PureBasic also has versions available for Linux, Amiga, and Mac, this
book will only be focused on the Windows versions.

This book is based on the commercial version of PureBasic. Some of the
example programs may not work with the demo version of PureBasic.
Also, make sure you have the latest version. At the time of this writing,
I am using PureBasic Version 4.61.

The Major Sections of this Book
In order to cover most needs while trying to maintain a non-exponential
learning curve, I have broken this book up into sections.

The first section, “PureBasic Basics” is focused on the fundamentals of
programming and the use of PureBasic. Here is where you will learn
how to create simple applications that will help hone your development
skills.

13

Section two, “PB Game Tools,” is where we’ll start putting images on the
screens and moving them around. Using knowledge gained in section
one, we will also work on animation, collisions, and timing functions.

“Advanced Topics” will be the focus of section three. That's where we’ll
get into a few tricks that will help build your programming expertise.

Conventions Used in this Book

Up until now, you've seen me using the full title “PureBasic” a lot. To
make for easier reading, you'll often see me refer to PureBasic as simply
\\PB.II

Throughout this text you will see boxes that are filled with bold text.

These are “code boxes” because the text inside is actual PB code. Here
is an example:

| Result = OpenScreen(800,600,16,”My Game™) I

You will also notice the following special characters on some lines in the
code:

|Jand—> I

Such as:

If Shields < 100 and Armor > 100 and
— RepairAbility < 10

Gosub DestroyShip
EndIf

The “<¢” symbol means that the line is continued on the next line.
Depending on the interface you're using to read this book (iPad, for
example), and your selection of font and font size, you will see the lines
of code break in various locations. In the actual PureBasic development
environment you will need to type the line as one full line because
PureBasic will not allow multiple line entries. Note that the next line will
include the “—” symbol to further denote that the line is meant to be
entered in as part of the previous line. The goal of these two symbols is
to help you know which lines stay together. Unfortunately, it won’t be
an exact science since there are so many combinations of devices and
layouts that I could not possibly account for, so please be sure to use
care when entering code from the text. Also, always keep in mind that
you can download the source code, which will not have this issue since it
is already in PureBasic’s required format.

14

Where can I get the source?
You can download the source at
https://www.mediafire.com/folder/aajnae2bi4ta4/Pure_Basic

What if there are errors in the book or code?
While both myself and the editors have tried to catch all the errors, it's
likely the case that something slipped past all of our testing.

I am no longer supporting this book, which is why it has been released
for free.

15

https://www.mediafire.com/folder/aajnae2bi4ta4/Pure_Basic

Chapter 2: Fundamentals of Programming

What is a Program?

A program is simply a set of instructions that the computer executes in
some sequence. There are many types of programs that you are already
familiar with, including Netscape, Microsoft Windows, America Online,
and so on.

In order to create these programs, teams of developers (or
programmers) write thousands of lines of code using languages such as
C, C++, Visual Basic, etc. Typically a developer is responsible for a
certain section of the project and codes exclusively on that section. The
code developed is then shared with other developers that can
incorporate it with their code. In a sense, this is what's happening with
PB.

The developer of the PureBasic language, Fantaisie Software, has
programmed the graphics, sounds, input, multi-player, and many other
routines that you, the game developer, can incorporate into your
project.

Here is an example program to give you an idea of what code in
PureBasic looks like:

If InitSprite() = 0 Or OpenScreen(640, 480, 16, "Test") =0
MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_MessageRequester OK)

Else

ClearScreen(RGB(0,0,0))
StartDrawing(ScreenOutput())

DrawText(280,240,"Hello, World!")
StopDrawing()

FlipBuffers()

Delay(5000)
EndIf

End

Notice that most of the text is very English-like. This is how most
programming languages are these days. There are still some languages
(such as Assembler, which CAN be used inside of PureBasic) that are
much more cryptic when compared to the easily-read PureBasic
language.

16

Object Code

When you have completed a project, you must request that PureBasic
translate the code in your project to something the computer can
understand. This process is known as “compiling.” What this process
does is basically take your English-like commands and turn them into
Object Code, which is also known as Machine Code.

Object Code is the native language of your computer’s processor. It's
nearly impossible to read since it is purely numerical, which is why we
develop in languages such as PureBasic and allow the compilers to do
the conversions for us.

Bits and Bytes
Before going much further, let’s touch on the topic of bits and bytes as
you'll need to know what these are for some of the information coming

up.

A bit is the smallest unit of storage in a computer. Since computers
actually read only 0’s and 1’s, each is measured as a bit. For example,
the letter “"A” consists of 8 bits (or eight 0’s and 1’s) that, when
combined, total the numeric value of 65.

A byte is a combination of 8 bits. So, in order to get that letter “A,” we
must use a byte value. Each bit in a byte has a value assigned to it
based on its position in the byte.

128 |64 |32 (16 | &8 (4 |2 |1

Now, starting from the right side you’ll note that each number increases
by a factor of itself. 1+1=2, 2+2=4, 44+4=8, etc. Each of the little
squares in that diagram represents an element of the byte, or a bit. In
actuality, those boxes would contain either a 0 or a 1, not the number
shown in that diagram. But referring to the diagram, the byte total
would accumulate the represented number if the bit contained a value of
“1.” Here's an example:

o1 |0 (D |0 (0|01

Since the first and seventh bits are flipped on, we know to take the byte
values of “"1” and “64” (as per the previous diagram) and add them
together, thus making this byte value a total of 65. If all the bits are set
to 1's, you would have to add all the values up in a byte by element and
you would get the byte value of 255, giving you 256 total states. Keep
in mind that a computer counts from 0, not 1. So if you take all the bit

17

values and set them to 0, you’'d have a value of 0. If you set them all to
1, you'd have a value of 255. If you count from 0 to 255, keeping 0
inclusive (as in “0...1...2...3...etc.), you would count 256 when finished.
So, again, you have 256 elements in each byte, but the maximum
actual value is 255 because of the 0 start.

Screen Resolutions and Bit-Depth

In order for PB to start up a program, it must know what screen
resolution you’re going to use, and its bit-depth. Screen resolutions
come in all shapes and sizes, and which ones are available to you is
based on the quality of your video card.

You may have heard people use the terms “640x480,” *800x600,” and
"1024x768.” Those are a few of the many resolutions available.
Basically, the first number describes the number of pixels that go across
the screen (the width). The second number describes the number of
pixels going from the top to the bottom of the screen (the height). So,
“640x480"” simply means that there are 640 pixels going across and 480
going from top to bottom.

The biggest advantage of having your game use a higher resolution is
that the images displayed are crisp and you can fit more on the screen.
The biggest disadvantage is that it makes it a speed hog. I'll get into
why there is a slow down in the next section.

Bit-Depth is the number of bits used to display the color of each pixel.
You can choose from 4-bit, 8-bit, 16-bit, 24-bit, and 32-bit.

4-Bit Color: As you may recall in our discussion on bits and bytes, 4 bits
can only contain a number up to 16. So in 4-bit mode, we have 16
colors to work with. In this day and age, that's pretty pointless, but if
your OS supports it you can always push your personal boundaries and
try to make something work at such a low color value.

8-Bit Color: 8 bits can only contain a number up to 255, which, starting
from 0, is 256 states. This means that each pixel drawn can be 1 of 256
colors (0-255). Sounds very limiting, huh? It is, but keep in mind that
a lot of games were made using this bit-depth. Look at most any game
made between 1987 and 1997 and you'll see 256 colors in action. 8-bit
caused most games to work with palettes. Palettes allowed the artist to
re-assign color values to the various 256 spots. This made it possible to
have various shades of the same color, which made color transitions
much more pleasing to the eye. Unfortunately, it also meant that the
artist would lose a color for each shade created. As you might imagine,
it was quite the challenge to handle art development for this
environment. This depth also made it so the programmer would have to
write code to handle the various palettes created.

18

16-Bit Color: In the late 90’s, 16-Bit color on the PC became a way to
produce better quality graphics. This is because the artists were no
longer held to the 256 color limitation. With 16-bits the artist can use
up to 65,535 colors per pixel. At that level of colors, palettes pretty
much got tossed out the window. Artists started creating much more
stunning graphical elements. This was a huge step in the game industry
because it allowed for more realistic environments. The challenge, as
we’ll see in a bit, was that use of 16-bit greatly affected the speed of
games.

24-Bit Color: 24-bit, also known as True Color, gives us the ability to
use one of 16,777,215 colors per pixel. That's a TON of color choices...
more than the human eye can distinguish, actually. It's argued that
there’s no real point in going any higher in color on video cads and
printers since we won't be able to distinguish the subtleties anyway.

32-Bit Color: 32-bit is really just an extension of 24-bit. It has the
same number of colors because the first three bytes (the 24-bit
component) are for Red, Green, and Blue. But the addition of 8 bits
gives two advantages: 1) It keeps the memory “byte aligned,” meaning
that since Intel-based chips move data along the bus at 32-bits per
move, 32-bit color moves the data without adjustment. 2) While the
original idea was that the 4™ byte (bits 25-32) were simply for speed
and thus discarded upon hitting video memory, it was decided to put
that 4™ byte to use. Now that 4™ byte is useful in “alpha channeling,” or
“masking.” This means that we can specify how we want to merge a
color of a pixel when it overlays another pixel. So instead of overwriting
a blue pixel with a red pixel, for example, we can display a pixel at that
location that is a merger of the two colors thus giving the effect that one
pixel is crossing over another, which gives the illusion of depth.

Speed Impact of Higher Resolutions and Bit-Depths
The higher the resolution and bit-depth, the slower your game will run
(except for 32-bit over 24-bit. 32-bit does run faster than 24-bit due to
the architecture). The reason for the speed differences comes down to
how many pixels must be displayed per screen and how many bits each
pixel contains, and also how data is moved back and forth using proper
alignments...meaning that a computer will more rapidly move a 32-bit
value than it will a 24-bit value because of the architecture of a
computer. 24-bit values require that the computer do offset-
computations where a 32-bit value does not require the same
calculation since the machine is built to work with such values.

Let’s use the case of 640x480 with a bit-depth of 8. Since 8-bits is 1
byte, we are in effect saying that we need to draw 640 bytes x 480
bytes for every screen we render. To put that into perspective, we have
to use 307,200 bytes for each rendered screen. That's A LOT of bytes.
If we increase that bit-depth to 16, then we have to draw 2 bytes for
each pixel, thus increasing our total byte use to 614,400. Now granted,

19

the pictures are a bunch prettier, but that’s double the bytes required
for each render.

To make this even more impressive, let’s say our video mode is
1024x768 with a 32-bit depth. The math is 1024x768x4 (since 32-bits
is 4 bytes). The total bytes per render equals 3,145,728!

If you've ever heard the term “Frames Per Second,” you'll start getting
why this is so important. Commonly known as FPS, it's the number of
frames of animation your game can show every second. This is
important because the human eye requires a minimum number of
frames per second to be fooled into believing that an image is actually
“moving.” If the FPS is too low, the eye will pick up the choppy effect
and will not be fooled.

Screen resolution and bit-depth affects this number because of the
number of bytes required to make a single frame of animation.
640x480x16 will take twice the amount of time to accomplish this than
640x480x8. 1024x768x32 will take quite a bit longer than 640x480x8!
So the higher the resolution and the higher the bit-depth, the slower
your FPS, and that's BEFORE you get into other elements that impact
FPS such as Artificial Intelligence and various graphical effects.

The good news is that today’s video cards are very speedy. You almost
have to work at slowing the things down. But, trust me, you can if you
really try.

DirectX, Peripheral Cards and Drivers

PureBasic uses a proprietary graphics engine that sits on top of DirectX.
DirectX is simply a set of routines that work within the Microsoft
Windows environment to handle graphics, sounds, input devices, etc. It
was written in such a way that peripheral manufacturers could easily
support powerful multimedia enhancements by just providing updated
drivers.

Some of you may be wondering why you wouldn’t just use a
programming language other than PureBasic to interact with DirectX.
The primary reason is that DirectX can be somewhat cryptic, especially
for newer users. You would need to understand Windows programming
architecture and understand the fundamentals of COM (Component
Object Model) programming to really utilize the power of DirectX
directly. PureBasic allows you to focus on creating your game or
application in a simple to use, easy to learn language that is extremely
fast and powerful. In a nutshell, PureBasic lets you get to work on your
project without having to understand all the fundamentals of Windows
and DirectX programming.

Peripheral Cards and Drivers: Peripherals are basically anything that you
add to your computer that has some type of interaction with you/your

20

computer. Examples are: video cards, a mouse, a joystick, a keyboard,
etc.

With so many brands of peripherals on the market, developers were
having a difficult time programming their games to support the
functions of each one. DirectX helped address this problem by requiring
the various manufacturers to conform to the DirectX model—assuming
the manufacturer wanted to get Microsoft DirectX certified.

In order to stay up on the latest DirectX versions, the manufacturers
have to constantly update the drivers for each peripheral based on
direction from Microsoft’s DirectX developers. Drivers are simply a set
of interface programs that DirectX uses to communicate with the
peripheral. You should always ensure that you have the latest drivers
for your peripherals, and you should make sure to inform the players of
your games that they should install their latest drivers as well.

Creative and Technical Design Documents

One of the most important things to consider when beginning any
development project is design. Designing is just the process of making
sure you have a road map of where you want to be at the end of the
development cycle. Without a design you'll basically be playing it by ear
in your development. For small projects, this is usually not so bad, but
the larger the project becomes the more likely you'll have a lot to re-do
if you don’t plan properly.

So how do you go about designing? Depending on the scope of your
project, a design may only be a couple of quick sketches and a few lines
that help to remind you what to look for as you develop. But larger
projects require more detail and typically are separated into “Creative”
and “Technical” design documents.

I have seen creative design documents that are over 1,000 pages long!
They've included the main story line, profiles for each character, weapon
details, game level/map details, NPC (non-player characters) details,
etc. The technical design documents are usually smaller, ranging from
30-250 pages.

Don’t be too concerned here, though. Keep in mind that these
documents are for games that have millions of dollars backing them.
The biggest design document I've written for personal use was about 50
pages long and the technical document was about 20.

When working on your creative design document, you’ll want to focus on
a number of questions, such as:

1) What is the game about? If I had to sum it up in ONE sentence,
what would I say?

21

2) What type of game is it? First-person shooter, role-playing game,
strategy, etc.

3) What are the primary features? Cool graphics, game-play, multi-
player, etc.

4) Who is the main character...or are there many to choose from, and
what do they look like, etc.?

5) Where is the game set? Is it ancient Rome, a distant galaxy, a
cloud molecule, etc.?

6) Who are the bad guys, and why are they bad guys?

7) What do all the bad guys look like, and what are their names, etc.?

8) What is the ultimate goal of the player and what are the main
obstacles stopping that player from attaining that goal?

9) What will the player’s interface look like (also called the HUD
“heads-up display”)?

There are many more questions you could ask yourself, but this should
get you started on seeing what creative design is all about.

Now, you may just want to re-create a game that has already been
done. If so, you probably won’t need to deal with a creative design
since you've played the game so much that it’s ingrained in your mind.
But either way, you’ll probably want to write up the technical design
document.

Technical design documents are simply a list of technical issues that
you'll likely face when developing your game, and the steps you plan to
take in tackling these issues. A simple example of this may be the
desire to have different explosion types based on the weapon being
used by the player. This is a simple example because you can just
check which type of weapon was fired and then tell your program to
display the respective explosion upon contact.

A more complex example would be unit movement. Let’s say that you
have a bunch of units in your army and you need to move them from
point A to point B. To make matters worse, your maps include obstacles
such as water, trees, and buildings. You may think that this is a simple
task, but it's pretty complex because you have to remember that you're
just displaying little graphical images...they don’t know there are trees in
the way! With this you would either write down “To Be Resolved” in
your document, or you’d go and study up on path-finding algorithms
such as A*. Don’t be too concerned here...there are a lot of libraries
that have already been written to help you handle these types of issues.

Good Coding Style and Commenting

Everyone has his/her own style with how to do things, but some styles
are based more on being different than being clear. If you ever have
the notion to allow other developers to use/modify your code and/or
work on a team with you, I would highly recommend that you adopt a
style that is accessible.

22

Commenting code is the most important, yet most overlooked, aspect of
development. I can think of nothing worse than seeing pages and pages
of code without a single comment as to what the code does. This makes
for a seriously difficult time in maintaining or upgrading and should be
avoided at all costs. I've fallen for this trap and have found myself
confused at my own code after not seeing it for months.

To make matters worse, commenting is EASY. All you have to do is
write a quick line that describes what a section of code is for.

A Place to Work

Okay, you may think this part is goofy but it’s probably the most
important part of your development project. Game developers are
notoriously lazy. You need to find a place where you can focus on your
game designing and development that feels comfortable and fits your
mood.

To give an example, my office is full of gamer junk. There are toys all
over the place and there’s a killer sound system that keeps the music
going so I can't hear anything else going on in the house that may
distract me. I don't play with the toys (most of the time), but they set
the tone that I'm a game-developing junkie and that keeps me in the
mood to create! Another cool part of this is that when I face
development roadblocks, I don't easily give up. Since I'm in a
comfortable development place (my happy place!), I'm already in the
right mindset to tackle tough issues.

Again, I know this sounds goofy, but if you dont make sure you're set in
this department you’ll soon find yourself slowly drifting away from your
efforts.

To move up with the times since the original writing of this book,
multiple monitors are the way to go. I have five (yes, 5!) monitors at
my desktop now. It's taken a while to build this system up, of course,
but at this point I can't imagine life as a developer with only one
monitor. If you're still stuck in single-monitor land, you don't know what
you're missing! But, yes, I still have the toys on my desk.

23

Chapter 3: Getting Started with PureBasic

The Good Old "Hello, World!” Program

Almost every programming book I've ever seen starts out with a
program that simply puts “Hello, World!” on the screen. Typically I dare
to be different, but in this case I'm going to keep with the norm.

OpenConsole

First let’'s go ahead and see what the OpenConsole command is like.
Type in the following code exactly as shown, save the file and then ask
PB to run it by pressing F5 on your keyboard.

OpenConsole()
Print("Hello, World!")

Delay(10000)
End

Now let’s break this down so you can see what’s going on.

| OpenConsole() I

This command instructs PB to open up a DOS-like window, also known
as a Console Window. It's the area of the Operating system that is non-
graphical, giving the user a more direct textual approach to
development.

Why would anyone want to use this? Well, a number of programs do not
need the heavy (or even light) graphics and visual appeal usually
ingrained in Windows applications. For example, you may have a
program that just runs through a bunch of files and lets you know how
many total characters there are in them. Why go through days of
building a graphical interface when you can easily snag that information
with a few lines of code?

To see a console application at work, you can go to your Windows
START-RUN area and type in “ping www.purebasic.com” and you’ll see
the data spit out in white on a black background with no graphics
present.

| Print(“Hello, World!”) I

The Print command tells PureBasic that you wish to display some
information to the user. This is a very straightforward command that
accepts the text you wish to display as an argument contained in the
quotes.

24

| Delay(10000) I

By using Delay we effectively pause the application for a set number of
milliseconds. This will give us time to read the output of the application
before it quits. You would likely want to use a method of waiting for a
key press before exiting, but we're going to keep it simple for now.
Note that I used the value of 10,000 as the argument. Since the
argument is in milliseconds, the Delay command will hold up the
application for 10 seconds.

End

While PB is smart enough to end on its own, once the application is
finished, this command is not really necessary. ButI find that it is
always good practice to include as it is always wise for the programmer
to rely on his/her ability to make sure loose ends are tied up, not
something that should be easily relinquished to the language one uses.

OpenWindow

If you're looking to open up a standard Windows application window,
you'll be calling PB’s OpenWindow command. Again, to see this in
action, type in the following code exactly as you see it and then run it.
Don’t forget that the 4 and — are not to be typed in, they're just to
denote that the text is all part of a single line.

OpenWindow(0,200,200,200,100, ,"Hello, World Test Application", J
— #PB_Window_SystemMenu | #PB_Window_TitleBar)

StartDrawing(WindowOutput(0))
DrawText(0,0,"Hello, World!")

StopDrawing()

Delay(5000)

End

There is a lot of information in that code. Here’s the breakdown:

OpenWindow(0,200,200,200,100, ,"Hello, World Test Application",
— #PB_Window_SystemMenu | #PB_Window_TitleBar)

The OpenWindow command has a number of arguments available to
it. To get the full effect of these, please highlight that command in your
PB IDE window and press the F1 key.

25

In this example, I'm telling PB to identify this window as “0”. That’s the
first argument, which is used so you can set a numeric identifier for
each window you create. You can also use #PB_Any to have PureBasic
assign a unique value for you, which, as we'll see in later chapters can
be quite useful.

The next two arguments tell PB where you want the top-left edge of the
window to start, as default. In this example, I'm instructing PB to start
the window at position 200,200 of the screen.

Next I tell PB I want the window to be 200 pixels wide by 100 pixels
high in its internal area.

Then I sent along the name that we want to display in the title bar for
this application.

And finally I send two flags to the function on how I want the window to
operate. In this instance I want to make sure there is a System Menu,
an “X” in the upper-right to allow the user to close the window (though
in this example I'm not checking for mouse clicks so it really won't allow
the “"X” close option), and also I want to make sure that the title bar is
displayed. The title bar display is the default anyway, but I wanted to
show that multiple flags can be used by using the “|” operator (which is
the OR operator).

Again, make sure to hit F1 after highlighting the command in your IDE
to see the full options.

StartDrawing(WindowOutput(0))
DrawText(0,0,"Hello, World!")
StopDrawing()

The StartDrawing command informs PB where you want it to draw
various items, such as text, circles, pixels, etc. This command accepts
an argument that allows you to specify where, exactly, something
should be drawn. In our example, we're telling the command to use our
current window by passing the 0 in WindowOutput. Remember that the
first argument we passed to OpenWindow was 0, so we'll need to use
that here.

DrawText is similar to the Print command we used back in the Console
example. Its purpose is to put text up on a window or game window
screen. In a little while we’ll be covering the use of various fonts and
colors we can use with this command. The 0,0 at the beginning of the
call is the x,y coordinate to display our text. We will discuss coordinates
shortly.

StopDrawing is the command that informs PB you’re done drawing to
the selected surface.

26

Delay(5000)
End

Here, again, we delay the execution of the program so you can see
things happening. This time I've set it to 5 seconds.

We've already touched on the End command, but again it’s just to tie
things up and tell PB you’'re done with the program.

OpenScreen
Our final form of screen control is the one that you would most
commonly use for full screen games. Sample code:

If InitSprite() = 0 Or OpenScreen(640, 480, 16, "Test") =0 J
— MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_MessageRequester Ok)
End

Else

ClearScreen(RGB(0,0,0))

StartDrawing(ScreenOutput())

DrawText(280,240,"Hello, World!")
StopDrawing()

FlipBuffers()

Delay(5000)
EndIf

End

As with the last two examples, let’s break this down.

| If InitSprite() = 0 Or OpenScreen(640, 480, 16, "Test") =0 I

The InitSprite command let’s PB know that you want it to use the game
graphics commands known as “sprites.” We’'ll be discussing sprite
commands in full detail later in the book, for now though just know that
when performing any commands regarding to full screen games, open
through OpenScreen command, you must be sure that the user
environment is capable of dealing with them, and InitSprite checks this
out for you.

A video card with enough video memory and proper drivers (i.e.

DirectX) must be installed on the user's system. InitSprite will do that
checking and tell us if the system is OK for game-specific needs. There
are some other steps we should consider to tell something to the user

27

when his/her system is not capable of running our program, but we’ll

get to that later. For now just keep in mind that for full screen games
InitSprite must be at the beginning of your program, before any other
graphic commands are called.

Also notice that we are using an IF here and comparing the value
returned by InitSprite to zero(0). If the value returned is 0, then
InitSprite was not able to setup the system properly and therefore we
need to let the user know there was a problem and then exit.

The OpenScreen command is where we’ll be setting the width, height,
bit-depth, and title of our application. Very similar to the OpenWindow
command we discussed before, but with a number of differences. First,
note that there are no flags usable in this command, and also that there
is no starting X and Y location for the window. This is because
OpenScreen is used for full screen, non-windowed applications, most
notably games.

Another thing that OpenScreen does is set up the environment to have
multiple buffers. Buffers are areas of memory (most commonly video
memory) that your program writes graphics too. Once the buffer is
completed, your program shows the completed buffer to the user and
then begins writing the new graphics to the next buffer.

Note that we also check the return value of the OpenScreen command
to make sure it's not zero(0). If it is, we display an error message and
exit the application.

There are some commands in PureBasic (not all of them) that, after
performing the action they are meant for, return a value to inform us if
they were successful or not. Generally, if the returned value is NOT
zero(0) it means that the command has performed OK. In programmer-
speak, when a non-zero value is returned from a command, we say that
the command has returned a "True,” or “Success!” On the other hand, if
the returned value is 0 (zero), then it means that the command could
not perform its assigned task. In that case, we use to say that the
command has returned a "False," or “Failure.” It's up to the programmer
to handle these True and False answers from PB commands accordingly.
Despite the importance of these returned values, we're not going to deal
with these worries for now. Why will we dare to neglect such precious
information? Because the code becomes more complicated for beginners
to understand. There are some very basic concepts that must be
introduced first. Once we have introduced all the concepts you must be
aware in order to deal with the command results, then we'll start to
handle them in the way they deserve to be handled! In other words,
we'll teach you how to cook, that's the deal. But first, we must teach
you how to setup some fire, and how to choose from the various models
of pans, and which spices to put in the sauce...

28

Whenever we move from buffer to buffer, most often we will want to
make sure there’s nothing on that buffer. So we clear it.

| ClearScreen(RGB(0,0,0)) I

The ClearScreen function will clear our screen with a particular color.
Note that we use the RGB command to get the final color. There are
three arguments for the RGB command: Red, Green, and Blue. By
placing a 0 in each argument, we have set the color to clear the screen
with to black.

StartDrawing(ScreenOutput())
DrawText(280,240,"Hello, World!")
StopDrawing()

Just as in our last example, this grouping of commands will draw our
desired text to the screen. You should see thought that the argument
inside of the StartDrawing command has changed. The ScreenOutput
command returns the screen device used for 2D drawing operations.

| FlipBuffers() I

Now that we’ve drawn our text to the buffer, we need to display that
buffer to the user. The FlipBuffers command does just this. This will be
discussed in much greater detail in later chapters.

And we again finish with the Delay and End commands.

I know that I've pointed a lot to later chapters for some definitions. I
apologize for that, but to try and cover these pieces in detail now would
be premature and confusing. We'll get to them soon enough, though. I
promise!

29

Chapter 4: The Basics of PureBasic

Variables, What are they?

An important part of any PureBasic program is the ability to have
various forms of data. It can be numerical, character, memory,
graphical, etc. All data can be entered into your program manually, but
this doesn't allow for the dynamic nature of most applications.

So how can we store a value that we can update at any time? We do so
by using variables.

A variable is simply an area of your computer’'s memory that has been
set aside for holding values that you wish to hold and manipulate.
Variables are created real-time by the developer. The amount of
memory they consume depends on the type of variable required to hold
the proposed value. Here is a list of variable types in PureBasic:

String (also known as Scalars)
Fixed String
Byte

Ascii
Character
Word

Unicode

Long

Integer

Float

Quad

Double
Pointer/Handle

VVVVVVVVVYVYVYVYY

Strings: A String is simply a collection of characters. For example,
“PureBasic” is a string of 9 characters. Why is it called a String? The
idea is that the “"P” is tied to the “u” and that is tied to the “r,” and so
on. So if you were to take all those letters and “string” them together,
you would get the word “PureBasic.” Consider the following:

Pl U (R wE

Individually, just like letters in the alphabet, these are simply
characters. But those arrows demonstrate the way PB will look at a
string. Each letter points to the next and treats them as a word.

Strings are used for any textual information that you will deal with.
Examples would be the player's name, the planet they set up on, the

30

description of that planet, the ship they’re flying, the ship’s description,
etc.

Byte: A collection of 8 bits. As you may recall in Chapter 2, a byte may
hold any number from 0 to 255 (a total of 256 elements). PureBasic
byte-type variables, though, are signed variables. This means that
instead of using the whole set of 8 bits for holding values between 0 and
255, they'll use only 7 bits for this purpose and save the very last one to
serve as a sign. If the sign is off (0) then the value is positive, if it is on
(1) then it is negative. Because of this, the possible values contained
within a byte variable in PureBasic are =128 to +127.

Why is it =128 to +127 and not -127 to +127? This has to do with the
sign bit. Consider the following:

oo Q000 80

This layout gives us the value of 0. 0 is neither positive nor negative, so
the sign bit is not enabled. But what happens if we decide to enable the
sign bit?

1 (o1 Qf(alalalnl n

Now we have an issue. Since 0 cannot be negative, the CPU will look at
this as both a sign bit action and as 128. So we have -128. But what if
we did this:

U I A T A O T S A T A e

Doing the above would give us —127 because the sign bit is not the only
bit enabled. It is only when it is solely enabled that the CPU will
consider it both negative and 128.

Often times a programmer will use Byte values for numbers that are
certain to be very small. Since it's always wise to use as little memory
as possible, programmers look for every opportunity to use a Byte
variable size. An example usage for a Byte value in a game would be
ship types. Let’s say that you have 18 different ships that a user may
purchase throughout the many levels of your game. Since 18 is
definitely never going to go beyond the positive limit of 127, you may as
well use a Byte value to store the ship numbers.

31

Ascii: Similar to a byte, but the values it holds are from 0 to +255,
which allows you to use the extended Ascii character set.

Word: A collection of 16 bits, or 2 bytes. A Word variable is signed, like
the Byte value discussed above, and therefore follows the same rules as
the Byte value. But the range of numbers it can hold is -32768 to
+32767. Again, note that the negative value is one higher than the
positive. To understand this, please review the Byte description above.

I have used Word values on a number of things in a game, and have
found it probably one of the more common variable types in things I've
done. One example is my character’s position in the game world. It's
not often that you'll have a game map be so large that it will go beyond
32,767 world units. It's possible, certainly, but it would make for a
massive map. I tend to keep my maps less than that though, so I most
often use a Word value (or a Float) to store my map locations.

Unicode: Similar to Ascii, but much larger. This type can hold values
from 0 to +65535. You would usually use this type for multiple language
support where diverse characters are required.

Long: The default variable type for PureBasic. A Long is also known as a
“Double Word.” This is because it consists of 4 bytes, or 32 bits, so it is
exactly two times larger in bits than a Word is. And, like a Word and a
Byte, a Long variable is signed. Its range is -2147483648 to
+2147483647.

High scores is the easiest example here. When you are running up your
player’s score, use a Long. It'll hold very high numbers. If you ever
foresee going beyond the maximum possible value in a Long, go with a
Float.

Integer: Depending on your operating system, the Integer may support
4 bytes (32-bit OS) or 8-bytes (64-bit OS). If 4 bytes, the Integer may
contain values from -2147483648 to + 2147483647, if 8 bytes, the
Integer can hold -9223372036854775808 to +9223372036854775807

Floats: A Float value is important when you are looking for more
precision in your calculations. The term “Float” means “Floating Point,”
and it's simply referencing that the decimal point can float (or move)
from one position to another in a value.

For example, you may have the value 10.75. If you multiply that value
by 10, you'd get 107.50. Notice that the decimal point “floated,” or
moved, over one space to the right.

Floats are particularly useful when making precision movements from

one screen location to another. They allow for smooth movement
because they can have such tiny adjustments in values. Also, let’s say

32

you have a big space freighter that takes a while to reach top speed. If
top speed is 5, counting by 1 isn't going to take long at all, but counting
by 0.00001 would take quite a while.

I tend to use Floats when I want to move my sprites at really slow
increments, mostly for smoothing movement.

Quad: This type is similar to the 64-bit Integer, so it's 8 bytes and can
hold values from -9223372036854775808 to +9223372036854775807.

Double: A Double is essentially a 64-bit float. It has 8 bytes, but since it
(like the Float) supports scientific notation, it is essentially limitless.

Pointers/Handles: A memory value that holds the position of another
value. For example, when you load an image, you will have an image
handle that you use from that point on to reference that image. So, in
essence, you are pointing to that image when using image functions.

Defining Variables
There are a few ways that variables can be created:

e Global: This type of variable will be available for reading and
manipulation by ALL of your PureBasic programs.

e Local: Variables created this way will be available for reading and
manipulation only by a predefined portion of the program, and will
be alive only for the time needed to execute the code that portion
contains.

e Protected: This type of variable acts as the Local type, but with a
twist. It allows the programmer to hame a variable within a portion
of code using the same name of another variable already declared
as Global, without causing conflicts.

e Argument: This is a variable type that is used with functions, which
we will discuss in a later chapter.

A very important issue when using variables is creating a name that is
meaningful. You’'ll often see variable names such as “a” or “xs” or some
other seemingly random grouping of letters. To the developer of the
program, these may have a significant meaning; but to the world that’s
going to modify this code, it's gibberish.

When you are creating a variable name, think about what the variable
does and then use something descriptive to define it. For example, let’s
say that you need to keep a list of the player’s current total score. Why
not name the variable TotalScore? It makes sense immediately what the
variable is for, and it’s not overly verbose.

33

Sometimes I will use a little descriptor at the beginning of most
variables so I can instantly see what kind of variable it is. I'll use the
letter “I” for Long, “s” for String, “f” for Float, etc. So, instead of using
TotalScore, 1 would likely use ITotalScore. 1 now know, by just a glance
that this variable is a Long and it’s used to hold the total score of the
player. As you will see shortly, though, PB variables are defined with
the type of variable at the end of the variable name. So, you could also
just keep using that throughout your code to keep track of the type of
variable you're working with.

One last thing on naming conventions: notice that I also capitalize the
first letter in each word. Again, this is just to make things more clear.
Typically you don’t need to do this, but it's good practice. Think of a
variable that is to hold the passing scale of a student in a class. Without
capitalization, the variable would be passscale. You could easily miss an
“s” in that. With capitalization, it becomes clearer: PassScale.

Here are examples of good variable names:

sPlayerName
bCounterValue
fShipAcceleration
PlanetDescription
BrakingSpeed
ShieldPower
WeaponType.b
JumpSpeed.w
ShipName.s

This is also known as UpperCamelCase because most of the variables
start with an uppercase letter and then each word has another
uppercase letter. The idea of "camel" here is that the letters represent
the bumps on the back of a camel. So, "PlanetDescription" has two
bumps.

With lowerCamelCase you would start the first word in the variable with
a lowercase letter. For example: planetDescription.

Why have upper and lower camel case options? That really depends on
you, the developer. You may want to have all of your standard variables
as lowerCamelCase and all of your globar variables as UpperCamelCase
so that you can differentiate them. Different development houses have
different naming conventions. The main point is to try to make a rule
and be consistent so that you can know at-a-glance what you're looking
at.

The first step in using a variable is to declare it. In PureBasic, this just

means that you put up the variable name and assign it a value.
Assignments are done using the “=" symbol. Here’s an example:

34

| TopSpeed.b =5 I

That one line sets up a variable named TopSpeed, as a Byte and assigns
it the number 5. From here we could easily adjust that value by doing a
mathematical function on it. Let’s say that our ship’s top speed just
increased by 2 because we got a really cool new engine installed. We
could do the following:

TopSpeed.b = TopSpeed.b + 2 I

That's the equivalent of saying TopSpeed = 5 + 2, because remember
that our top speed value was originally assigned 5.

That describes how a Byte variable is setup, but what about the others?
The only difference is the variable name and the type of data assigned.
For example:

| TopSpeed.f=5.5 I

Notice the “.f” after the variable name. This tells PB that you want this
value to be of type float. You only have to put the “.f” definition on the
variable name when you declare the variable. After this definition, PB
will remember its type.

TopSpeed.f=5.5
TopSpeed.f = TopSpeed.f + 0.5

PureBasic will now alter TopSpeed to hold the value of 6.0.

PlayerName.s = “Krylar” I

The above example creates a variable of type String. The .s at the end
of the variable instructs PB that the data held will be character data,
non-numeric.

PureBasic also allows the string variables to be created using the $ sign,
as is common in BASIC-like languages. However, do note that the
following variable names will be considered different variables to PB:

PlayerName.s = “Krylar”
PlayerName$ = “Derlidio”

35

To PureBasic, PlayerName$ includes the “$” as part of the variable
name. This is why both of these definitions are valid, and will both
contain different information.

Commenting Your Code

Everyone has a style for commenting code, and you will likely build your
own method as well, but here are a few things to think about when
commenting:

¢ Make comments as clear and concise as possible. Brevity is
important, but only if the comment clearly conveys the purpose of
the code.

e Try to comment as you develop your code, not as an afterthought.
Commenting as you code ensures that you’'ll have a fresh
perspective on what the code is doing. It can also help you pinpoint
bugs easier since you'll need to clearly describe the code piece.

e As you update your code, also update your comments. Comments
are only as good as the code they describe. If the code evolves and
the comments don’t, then the comments quickly become irrelevant.

e If there are multiple people working on the code, make sure you put
an identifier in the comment to denote who changed the piece of
code and updated the comment.

e It is sometimes best to date subsequent changes on applications
released with source code. This is so other developers can know
what has changed and when.

You may decide to never share your source code with others, but this
doesn’t mean that you should avoid commenting. One day you will
likely end up revamping your own code and you'll be just as lost as
anyone else looking at your non-commented code.

Even though PureBasic is a simple language, algorithms can still become
quickly cryptic. Worse even is that you often will find yourself hacking
your own code to make it do what you want. This is typical for most
programmers, but when you come back a year later to update this code
you'll be completely confused at what you were thinking about if you
don’t clearly comment it.

To help you understand this, I'm going to take our OpenScreen version
of the “Hello, World!” program and comment it. Notice that the semi-
colon (;) is used at the beginning of each comment line. PureBasic will
consider anything after the semi-colon and up until the end of the line a
comment, instead of code. I put the asterisks (*) in simply to make the
sections more pronounced in the program definition.

Compare the first "Hello, World” program to the following one. Granted

that this is a very simple program that needs little explanation, but you
can immediately see what the purpose of the program is, when it was

36

updated, what was updated, and a piece by piece breakdown of what is
being done.

« 3 s sfe sfe 3 e sfe sfe s e she sfe s s she sfe sfe sk she sfe sfe s she she sfe s she she sfe s sie she sfe sfe e she she sfe s she she sfe s she she sfe sk sk she sfe skeske sk skeok
s

; Title: Hello World!

; Files: helloworld.pb

; Author: Krylar

; Current Version: 1.0

; Last Updated: 01/01/01

- 3 sk sfe sfe st ke she sfe st ke she sfe st sk ske sfe sfe sk sk sfe sfe sk ske she sfe sk sk sk sfe st ke she sfe stk ske sk st s sk sk stesieske sk steoskeoskosk skeokoskoskoskok
s

; Description:

; Simply puts up "Hello, World!" and delays 5 seconds
;***
; Update History:

; 12/01/00: Started project

; 01/01/01: Moved the text to the top of the screen

« 3 3k sk sk sk sk sk sk sk sk ok sk st sk sk s sk sk sk s sk sk sk sk sk sk sk sk sk skesk sk sk stk sk sk stk sk sk stk sk sk skokoskoskoskokokskskok
>

; Initialize the sprite and a 640x480, 16-bit screen

If InitSprite() = 0 Or OpenScreen(640,480,16,"Input Test") =0
MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_MessageRequester OK)
End

EndIf

; make sure our output buffer is cleared to black
ClearScreen(RGB(0,0,0))

StartDrawing(ScreenOutput()) ; Tell PB to start drawing
DrawText(280, 240, "Hello, World!") ; draw out our text
StopDrawing() ; Tell PB we're done drawing

; Flip the buffers to show our changes to the user
FlipBuffers()

Delay(5000) ; delay the program for 5 seconds

End ; Tell PB we're finished with the program

Some people prefer to put their comments directly after the commands,
as follows:

| Delay(5000) ; delay the program for 5 seconds I

This method is fine, too. Actually, I will usually use both methods in my
code, as you can see from the above example and from many to come.
Note: I will not be including the top comment section in all of the
examples due to space limitations.

37

Regardless of the number of comments in your code, your final
application file size and speed will not be affected. This is because
PureBasic completely ignores all comments when it compiles your code.
Thus, to PB, it's as if they’re not even in there. That said, however,
there is such a thing as commenting too much. You don’t need to be
overly verbose as long as you're clear. If you find that you're putting in
a paragraph to describe a single line, you probably need to rethink what
you're trying to do. The above example is far too heavily commented for
what it does, for example. I only used it as an example so you could
see many facets of commenting.

Simple Arithmetic

Math is an essential element of most any game you’ll develop, so you'll
need a way to perform calculations. Later we’ll get into the advanced
calculations that you can do to get various effects working, but for now
let’s just look at simple arithmetic.

Addition, subtraction, multiplication, and division are handled by the
symbols +, -, *, and /, respectively. For example:

| Valueb=1+2 I

Value would be equal to 3. That’s simple, no? If you replace that +
symbol with any of the other symbols (-, *, or /) you'll get a different
result, but it’s still easy.

But look what happens when we have calculations like this:

|Value.b=1+2*10/573 I

You may think that PB will tackle the problem like this:

But it won't. This is because PB will use precedence when calculating
this value. Precedence simply means the order in which an equation is
calculated. Like standard math, equations are calculated in PB by
handling first multiplication and division, then addition and subtraction.
Some of you math whizzes may know that exponents and parenthesis,
etc. will take precedence even over that... We'll get there - don’t worry.

So, here’s how PB will handle the above calculation:

38

2*10=20
20/5=4

1+4=5
5-3=2

So what if you were trying to get "3” as the answer? You’d have to use
parenthesis to change the precedence of the calculation. Here’s what
the calculation would look like:

| Value.b=(1+2) *10/5-3 I

The insertion of the parenthesis will make it so the addition will occur
before the multiplication, thus resulting in “3” instead of “2.”

The order of precedence is as follows:

()’*’/’+’_

This is a very important concept to grasp because you can literally
change the outcome of an equation by a misplaced parenthesis or by
not including parenthesis where they are needed. So be cautious of
this.

Another area that we’ll touch on quickly is exponent math. An exponent
is @a number that is multiplied by itself a set number of times. In
PureBasic you would use the Pow command to do exponent math.

| Value.f = Pow(2,4) I

This command takes the first argument and increases it by the power of
the second argument. So the example call above would result in the
following:

2 * 2 *2* 2, which equals 16.

Cartesian Coordinates

While the object of this book is not to teach mathematical concepts, the
Cartesian Coordinate system is something you’ll need to understand to
grasp how PureBasic handles things. If you already know about this
system, feel free to skip ahead to the next section.

The Cartesian Coordinate system is just a way to show points on a two-
dimensional graph. Each point has a horizontal, often referred to as X,

39

and a vertical, often referred to as Y, value. These values describe the
location that a point will have on the graph. You may hear people using
terms such as “x, y coordinates” when regarding two-dimensional (2D)
games. They are simply referring to the pixel’s horizontal and vertical
position on the screen.

In figure 4.1, you can see what a Cartesian graph looks like. The dot at
(0,0) represents the position in the graph known as the origin. The
origin is the starting point of all other positions. Anything to the right of
the origin on the X-axis (horizontal) is a positive number. Likewise,
anything to the left of the origin on the X-axis is a negative humber. On
the Y-axis (vertical), anything above the origin is positive and anything
below is negative.

Note that the dot in the upper-right has a position of 3,2. This means
that the X position is 3 spaces to the right of the origin, and that the Y
position is 2 spaces up from the origin. The lower-left dot (-6,-3)
demonstrates a negative position on the graph.

(Figure 4.1)

PB uses the Cartesian system for drawing pixels, text, and images to the
screen, but the placement of the origin does not allow for negative X
and Y positions. The origin used by PB is the upper left corner of the
monitor. Refer to figure 4.2 to see what PB does when handling
Cartesian coordinates.

40

-- » (5.5

- mis.11]

(Figure 4.2)

As you can see there are no negative values to worry about when
drawing in PB. You would still have to worry about negative values
when comparing two locations, of course, but that’s easily accomplished
with simple subtraction.

41

Chapter 5: Program Control Statements

While it would be nice to simply have five lines of code to create a full
game that meets all your expectations, that’s not going to happen
anytime soon. The reality is you'll probably be looking at thousands of
lines of code. This being the case, we'll need a way to execute only the
pertinent lines at the appropriate times. To do this requires the use of
program control statements.

If...Else...EndIf

Even if you’ve never done any programming in your past, you're already
familiar with the concepts of IF...ELSE. Why? Because you use this
process in the every day decisions that you make.

Take, for example, deciding what you’re going to have for dinner. IF I
cook dinner then I will need to prepare all the food and clean up
afterwards, ELSE I'll have a messy kitchen. IF I go out to dinner then it
will cost me some hard-earned cash. Any time you make any decision in
real life, you unconsciously go through the IF...ELSE process. It happens
so fast (most of the time) that we're just not always aware that it's
happening. Any time you make decisions in your code, however, you will
have to consciously develop each IF...ELSE process to make sure your
code will be handling decisions in the way you expect it to.

The format looks like this:

If Condition is True
...process commands...
Else
...process commands...
EndIf

Let’s write a little program that asks the user to enter some number. If
it turns out to be the number 1, say so. Otherwise, tell the user it's not
the number 1.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16, .
—"Input Test")=0
MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_MessageRequester OK)
End
EndIf

ClearColor = RGB(0,0,0) ; assign our black color to a variable
ClearScreen(ClearColor) ; clear the output buffer to black

42

; Display text to the screen asking the user for input
StartDrawing(ScreenOutput())

DrawText(0,0,"Enter a 1 or some other number:");
StopDrawing()

FlipBuffers() ; flip the buffers to show the user the request

; Initialize a string variable and set it to be blank
Answer.s =""

; Now tell PB to wait until a key is pressed before going any further
While Answer.s =""
; Call PB's ExamineKeyboard to see if there’s any keyboard activity
ExamineKeyboard()
; If there is activity, assign key pressed to our Answer.s variable
Answer.s = KeyboardInkey()
Wend

ClearScreen(ClearColor) ; clear the output buffer to black

; Start drawing to the output buffer
StartDrawing(ScreenOutput())
; check to see if the user input the number 1 or not
If Answer.s ="1"
; if so, then write out text about that
DrawText(0,0,"You entered a 1! Press any key to exit.")
Else
; if not, then just tell them they didn't enter a 1
DrawText(0,0,"You did NOT enter a 1! Press any key to exit.")
EndIf
StopDrawing()

FlipBuffers() ; flip the buffer to show the user the result

; wait for any key to be pressed
Repeat
ExamineKeyboard()
Until KeyboardReleased(#PB_Key All)

End ; end the program

Notice specifically how we can control what our program does by using
the IF...ELSE evaluations. This is very powerful since we are in a
constant state of evaluation during a game. Think of the following
evaluations:

Is the player running or walking?

Did the player fall?

Is the player jumping?

Is the player being stopped because of a wall?
Is the player firing a weapon?

43

Was the player hit by an enemy’s attack?

Does the player have any “lives” remaining?
Did the player make the high-score list?

Did the player meet the objectives of this level?

This is a tiny list of the questions you'll need to answer during the
course of your game. The larger the game, of course, the more
questions you'll be asking.

It's important to note that you don’t need to use an ELSE if it's not
needed in your evaluation. For example, if you wanted to print “Shields
On!” if the variable ShieldsOn was equal to 1, you would do the
following (note that this little snippet of code will not run on its own):

; if ShieldsOn is equal to 1
If ShieldsOn =1

; Write “Shields On!” at the top of the screen
DrawText(0,0,“Shields On!”)
EndlIf ; end of If ShieldsOn = 1

You don’t need the ELSE here because the text will only be displayed if
the variable is equal to 1. Now, if you wanted it displayed when the
shields are off, you would use an ELSE for that.

Also note that PureBasic does not allow the use of a THEN portion of the
IF... ELSE...ENDIF construct. Some BASIC languages offer, and some
require, the use of THEN, but PB does not.

At the end of every IF... ELSE...ENDIF construct, though, you must put
the ENDIF. This is the only way that PureBasic knows you’ve completed
this particular “decision block.” A decision block is a term used to
describe a set of instructions acted upon when a particular decision has
been made. If you removed the ENDIF from the above example, you
would get an error when you tried to run the program.

You may be wondering why I added a variable in this code called
ClearColor and I assigned the RGB value of 0,0,0 to it. As you progress
into games you will be using that ClearScreen almost every drawing
iteration. So if you call the RGB function every time, that slows things
down. Not substantially, but as programmers we always try to be
efficient where possible. Since I know that I'm going to always clear my
screen to RGB(0,0,0), I don't need to call that every time I call
ClearScreen. [just call it once at the top of my program and then use
the resultant value in my ClearScreen calls. If you think in terms of 30
frames per second, that means I'll be clearing my screen 30 times a
second. That translates to not calling RGB 30 times a second! Every
time you relieve your program from having to make unnecessary calls,
you can squeeze out just a little more processing power.

44

Nested IF Statements

Sometimes decisions will need to be made as part of other decisions.
This is sometimes called a “decision tree.” If you've ever done a
flowchart, you are already aware of what a decision tree looks like from
a flowcharting perspective.

Water Cold or Hot?

. .
Did yvou freeze? Were you bumed?
— T ~ T
Get some blankets! Is Termp okay? Better get some ice!

o N

Yes, it's Perfect! Good enough

At first this may look kind of confusing, but spend a few seconds
studying it and it should become clear. We're simply asking a bunch of
questions, and based upon the response, another pertinent question is
answered.

But how would we represent that in our code? We’'d have to use nested
IF... ELSE...ENDIF constructs. Here is the code:

; if the water is hot

If WaterHot =1
; see if the user got burned
If WereYouBurned =1

DrawText(0,0,”Better get some ice!”)
Else
; is the temp okay?
If SoTemplsGood =1
DrawText(0,0,”Good enough!”)
Else
DrawText(0,0,”Yes, it’s perfect!”)
EndIf ; end of If SoTemplsGood
EndIf ; end of If WereYouBurned
Else
; did the user freeze?
If DidYouFreeze =1
DrawText(0,0,”Better get a blanket!”)
Else
; is the temp okay?
If SoTemplsGood =1
DrawText(0,0,”Good enough!”)
Else
DrawText(0,0,”Yes, it’s perfect!”)
EndIf ; end of If SoTempIsGood
EndIf ; end of If DidYouFreeze
EndIf ; end of If WaterHot

45

I know that’s a lot to digest your first time around, but study that
carefully and compare it to the decision tree above. If you take it line-
by-line you should be able to see how it works pretty easily.

We talked about the various evaluations a bit in the IF... ELSE...ENDIF
section, but how do those relate to nested IF's? Here's a breakdown of
some on that same list with additional questions, to give you a taste:

e Is the player running or walking?
A Does the player have on Rocket shoes?
» Which model?
Q Is the player on a conveyor belt?
e Did the player fall?
Q Was the player injured from the fall?
» Did the player land on something sharp?
» Is the player still healthy enough to continue?
+ Will the player’s speed be affected?
+ Will the player’s jumping ability be affected?

See how quickly you can get into many areas of evaluations? And also
how one evaluation can spring up many others? Hopefully now you
understand the need for decision trees and nested IF's.

ElseIf Statement

One way to help avoid too much nesting is to use an ELSEIF. As
opposed to creating a completely new IF block, ELSEIF allows you to
keep within the main IF block while still giving the ability to check else
conditions.

Here is and example that uses the ELSEIF layout instead of a bunch of
embedded IF statements.

If KeyValue = LeftArrow
DrawText(0,0,You hit the left arrow!”)
Elself KeyValue = RightArrow
DrawText(0,0,“You hit the right arrow!”)
Elself KeyValue = UpArrow
DrawText(0,0,“You hit the up arrow!”)
Elself KeyValue = DownArrow
DrawText(0,0,You hit the down arrow!”)
Else
DrawText(0,0,“You did not hit an arrow key!”)
Endif

And and Or Statements

There will certainly be occasions where you'll want to compare two or
more values on the same IF line. Imagine you wanted to know if the

46

player has been hit while jumping. You could do a nested IF, of course,
but it's not necessary. Instead you can ask PB if both cases are true on
one line.

; if the player has been hit and is jumping
If PlayerHit =1 And PlayerJumping =1
; take away 2 points from the shields
PlayerShields = PlayerShields —2
Else
If PlayerHit = 1 And PlayerCrouched = 1
; otherwise, just take away 1 point
PlayerShields = PlayerShields — 1
EndIf
EndIf

Let’s look at the functionality of each of these.

AND: This checks to see if two or more conditions have been met. The
main thing to note is that ALL of the conditions must be met when using
AND in order for PureBasic to return a positive result. Something to
think about when using the AND is to always use the most common
check first in the list. In our above example we first checked to see if
the player was hit before bothering to see if he was jumping. If the
player wasn't hit we don’t want to waste time checking for the jump,
right? Since the AND requires all conditions to be true, if the player was
not hit, then the rest of the statement is ignored... which saves time.

OR: The OR statement allows you to check if one OR another statement
is true. What if you needed to check whether a player was hit by
shrapnel OR an explosion? You could use nested IF statements, of
course, or you could use OR.

; was the player hit?
If PlayerHit =1
; was it just by shrapnel or the effect the explosion?
If ByShrapnel =1 Or ByExplosion =1
; just take 3 damage points off the player’s shields
PlayerShields = PlayerShields — 3
Else
; must have been a direct hit
; take the appropriate damage off
PlayerShields = PlayerShields — ProjectileDamage
EndIf ; end of If ByShrapnel ...

EndIf ; end of If PlayerHit

47

The SELECT Statement

What if you have a bunch of things to check, but you don’t want to have
a bunch of IF statements to check it with? You may allow the user to hit
different keys in your game, each having a different purpose. You have
left arrow, right arrow, up arrow, down arrow, spacebar, etc. Doing an
IF statement for each of these may start to make your code look a little
sloppy. So what do you do? Use the SELECT statement.

In a nutshell, SELECT allows you to check one variable for a lot of
different values. Here is an example:

Select KeyValue
Case LeftArrow
DrawText(0,0,You hit the left arrow!”)
Case RightArrow
DrawText(0,0,“You hit the right arrow!”)
Case UpArrow
DrawText(0,0,“You hit the up arrow!”)
Case DownArrow
DrawText(0,0,“You hit the down arrow!”)
Default
DrawText(0,0,“You did not hit an arrow key!”)
EndSelect

Now, compare that with the IF method:

If KeyValue = LeftArrow
DrawText(0,0,“You hit the left arrow!”)
Else
If KeyValue = RightArrow
DrawText(0,0,“You hit the right arrow!”)
Else

If KeyValue = UpArrow
DrawText(0,0,“You hit the up arrow!”)
Else
If KeyValue = DownArrow
DrawText(0,0,“You hit the down arrow!”)
Else
DrawText(0,0,You did not hit an arrow key!”)
EndIf
Endif
Endif
Endif

Or, compare using the ELSEIF method:

If KeyValue = LeftArrow I
DrawText(0,0,“You hit the left arrow!”)

48

Elself KeyValue = RightArrow
DrawText(0,0,“You hit the right arrow!”)
Elself KeyValue = UpArrow
DrawText(0,0,“You hit the up arrow!”)
Elself KeyValue = DownArrow
DrawText(0,0,“You hit the down arrow!”)
Else

DrawText(0,0,“You did not hit an arrow key!”)
Endif

There’s not an amazing difference in size, but you should be able to see
where the SELECT command could come in handy where one variable
can have a multitude of values.

Aside from clarity in your coding, the SELECT command allow for better
optimization when a single value is to be tested several times.
Optimization is always a good thing!

Loop Basics

There is a lot of repetitive action in video games. The game “Asteroids”
is a prime example because it's the same thing over and over. The only
real difference from level to level is that there are more rocks and more
UFQO’s. Other than that, it's essentially the same game throughout.

Due to this repetition in games, and programming in general, we need a
way to do things multiple times without having too much code.

Imagine that you wanted to draw 50 asteroids on the screen, and
imagine that drawing each asteroid would take one line of code. So, it's
easy to deduce that you would have 50 lines of code. Now, take that a
step further and say that you also have 30 laser shots flying out of your
ship toward those asteroids. Now you’ve gone up to 80 lines of code.
Each time a new asteroid appears or a laser shot is fired, so increases
your lines of code. There has to be a more efficient way of handling
this, right? Right, it’s done by using /oops.

A loop handles this because it is a means of telling PureBasic to do
something over and over until a certain condition is met, which is
precisely the kind of thing we’re looking for.

There are four types of loops available to us in PureBasic:

For...Next
ForEach...Next
While...Wend
Repeat...Until/Forever

Each of these loop types has its merits, so let’s run through them one-
by-one and discuss.

49

For...Next Loops

This type of loop can be considered as a “counter” loop. Meaning that it
is given an initial value to start at, and then counts up until it reaches
another value, and then it stops. As this loop continues counting, it will
process any instructions repeatedly until it meets its destined value.

Here is the layout of a FOR...NEXT loop:

For Variable = InitialValue To EndingValue
...process commands...
Next

Using our asteroid scenario, let’s look at some pseudo-code to
demonstrate the use of FOR...NEXT. First we’ll look at the method of
drawing ten asteroids without looping.

DisplaySprite(Asteroid _Image,0,0)
DisplaySprite(Asteroid_Image,0,0)
DisplaySprite(Asteroid Image,0,0)
DisplaySprite(Asteroid_Image,0,0)
DisplaySprite(Asteroid Image,0,0)
DisplaySprite(Asteroid _Image,0,0)
DisplaySprite(Asteroid_Image,0,0)
DisplaySprite(Asteroid_Image,0,0)
DisplaySprite(Asteroid Image,0,0)
DisplaySprite(Asteroid_Image,0,0)

Now let’s do the same thing using the FOR...NEXT loop:

For Images =0 To 9

DisplaySprite(Asteroid_Image,0,0)
Next

See how much smaller the latter is? You would really see a big
difference if you had to draw 50 or 100 asteroids, wouldn’t you?

If you're really observant, you'll notice that we didn't start from 1 and
go to 10 in our FOR loop. We could have easily done this and it would
have worked fine, but you should start getting used to the fact that
computers count from 0, not 1. Remember, where you go 1...2...3...4...5,
a computer goes 0...1...2...3...4. You'll often see code that has counter
offsets beginning at 0, so you should probably start getting used to that
now.

Now, let’s do something fun to really hone this in. Let’s create a little
program that lists the name “PureBasic” down the screen ten times. No,

50

this isn’t an amazing use of this powerful tool, but it helps get the idea
across.

Since we don’t want the text to overwrite the other pieces of text, we'll
need to make sure that the Y-axis is spaced appropriately. The
standard font used in PureBasic requires us to put a distance of about
16 pixels between the lines to ensure we don't overlap. To do this,
we’re going to keep a variable called TextY and we’ll add 16 to it each
time the loop iterates. This will tell PureBasic where we want each line
of text displayed.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Input Test")=0
MessageRequester("Error!", "Unable to Initialize Environment", .
— #PB_MessageRequester OK)
End

EndIf

ClearColor = RGB(0,0,0)
ClearScreen(ClearColor) ; clear the output buffer to black
TextY =0 ; initialize our Y position to 0

; Display text to the screen asking the user for input
StartDrawing(ScreenOutput())

; Use a FOR..NEXT loop to put up our text 10 times
For Rows.b=0To 9

; Write out the text
DrawText(0,TextY,"PureBasic")

; update the next Y position to draw to
TextY = TextY + 16
Next

; put a little message on the screen for the user
DrawText(0,400,"Press any key to exit.")
StopDrawing()

FlipBuffers() ; flip the buffers to show the user the request

; wait for any key to be pressed
Repeat
ExamineKeyboard()
Until KeyboardReleased(#PB_Key All)

End ; end the program

51

You can set your initial and goal values to virtually anything. Your initial
value may be a negative or positive number, or zero. If you use an
initial value that’s greater than the ending value, however, you're going
to run into a problem. Consider the following code:

For Images =10 To 9

DrawSprite(Asteroid Image,0,0)
Next

Notice that our initial value is greater than our goal value. If you
guessed that PB would bypass this loop, you guessed correctly! But
what if you wanted to count from a higher number to a lesser number?
Maybe you need to count down from 5 to 1 because you've got a racing
game and you want to convey when the racers can start.

You would do this by using the STEP command. STEP informs PureBasic
how you want the loop variable to be adjusted before evaluation. The
following code demonstrates a countdown from 5 to 1, displaying the
counter value as it goes. Note the use of the STEP command in this
example:

TextY =0
For Images =5 To 1 Step -1

DrawText(0,TextY,Str(Images))
TextY = TextY + 10
Next

That “Step -1" piece will inform PureBasic to subtract 1 from the
counter variable Images until it reaches the goal value of 1.

You can use any value to step with, also. Let’s say that you want to
count to 100 by 10’s.

TextY =0

For Images =0 To 100 Step 10
DrawText(0,TextY,Str(Images))
TextY = TextY + 10

Next

Pretty simple, eh?

You can also use a constant as the STEP increment/decrement value.

To do this, you would set up a constant and assign it a value. Then
instead of putting a number after the STEP command, you would put the
constant name.

52

#Value = 10
TextY =0

For Images =0 To 100 Step #Value
DrawText(0,TextY,Str(Images))
TextY = TextY + 10

Next

Placing a “#" before the name makes the area of memory set aside a
constant. This means that you can’t change the value assigned to it
(well, you could, but it'd be rather tricky and a bit more involved than
we're going to get).

You cannot use a variable in conjunction with the STEP command. Only
constant values will work.

While...Wend Loops

Where a FOR...NEXT loop processes based on a count from one value to
another, a WHILE...WEND loop can offer another option. This type of
loop can simply repeat a set of instructions WHILE a certain condition is
true. Yes, you can make this a count if you'd like, but it's not a
requirement.

The functional layout of this loop is as follows (note that WEND simply
means “While End,” thus signifying the end of the loop):

While Condition Is True
... process commands...
Wend

Here is a piece of code to demonstrate how you could use the WHILE...
WEND combination to provide the same functionality as a FOR...NEXT
loop.

Images =0
TextY =0

While Images <=9
DrawText(0,TextY,Str(Images))
Images =Images + 1
TextY = TextY + 10

Wend

So, what will this piece of code do? It will count from 0 to 9 and put
that number on the screen. I personally prefer the use of the FOR...
NEXT loop in these situations though, as it is tailored specifically for
counting between two values.

53

The most common use of the WHILE...WEND loop that I've seen in
games is as the main game control loop, which we’ll get into later. But
for now let’s look at a simple example that will blink “Hello, PureBasic!”
until the user presses a key.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Input Test")=0
MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_ MessageRequester OK)
End

EndIf

ClearColor = RGB(0,0,0)

; check the keyboard to see if any key has been hit
ExamineKeyboard()

; While the user has NOT hit a key

While KeyboardReleased(#PB_Key All) =0
ClearScreen(ClearColor) ; clear the output buffer to black
; write out our text
StartDrawing(ScreenOutput())

DrawText(270,240,"Hello, PureBasic!")

StopDrawing()
FlipBuffers() ; flip the buffers to show the user
Delay(100) ; wait for 100 milliseconds
ClearScreen(clearColor) ; clear the output buffer to black
FlipBuffers() ; flip the buffers to show the user
Delay(100) ; wait for 100 milliseconds
; check the keyboard to see if any key has been hit
ExamineKeyboard()

Wend

End ;end of program

See how the WHILE...WEND loop continues to roll, unaffected, until the
user presses a key? This is very important because it gives us a method
where we can more dynamically control a piece of code. There is still an
end-goal in mind with this type of loop, of course, but it has no pre-
determined end. It ends when the user wants it to end.

Again, the most common use I've seen of this loop type is the main
game loop. Programmers typically do all of their initializations (loading

54

graphics, sounds, etc.) and then drop into a While...Wend loop for the
rest of the game. Most games allow you to exit by pressing Escape or
some other quick key, which makes this loop type perfect for controlling
the action while waiting for the user to quit. Even games that have the
“Are you sure you want to quit?” box come up, likely use this loop
method. But instead of making the exit based on a key press, it's based
on a value. Here's an example:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Input Test")=0
MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_MessageRequester OK)
End

EndIf

ClearColor = RGB(0,0,0)

; set the ExitCondition to 0
ExitCondition.b = 0

; While the ExitCondition is 0

While ExitCondition.b = 0
ClearScreen(ClearColor) ; clear the output buffer to black
; write out our text
StartDrawing(ScreenOutput())

DrawText(270,240,"Hello, PureBasic!")

StopDrawing()
FlipBuffers() ; flip the buffers to show the user
Delay(100) ; wait for 100 milliseconds
ClearScreen(ClearColor) ; clear the output buffer to black
FlipBuffers() ; flip the buffers to show the user
Delay(100) ; wait for 100 milliseconds

; check the keyboard to see if any key has been hit
ExamineKeyboard()

If KeyboardInkey()
ClearScreen(ClearColor) ; clear the output buffer to black

; put up the question to the user
StartDrawing(ScreenOutput())

DrawText(0,0,"Do you really want to quit (Y/N)?")
StopDrawing()

FlipBuffers() ; show the question to the user

55

; set the Answers.s variable to be a blank
Answer.s =""

; Wait for a keypress before going any further
While Answer.s =""

ExamineKeyboard()

Answer.s = KeyboardInkey()
Wend

; if the answer is "Y" (or "y"), then set the ExitCondition to 1
If Answer.s ="Y" Or Answer.s ="y"
ExitCondition.b = 1
EndIf
EndIf

Wend ; end of While loop

End ; end of program

Please note that the KeyboardInkey command will not process certain
keys, such as Alt, Ctrl, Shift, etc. For these you’ll need the
KeyboardPushed command, which we will be working with later.

Repeat...Until/Forever

Good news on this one, it's almost identical to WHILE...WEND. The only
differences are the syntax used and the fact that the loop is guaranteed
to process at least once. To quickly help you understand, I will take the
last program we used and convert it to the REPEAT...UNTIL format.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Input Test")=0
MessageRequester("Error!", "Unable to Initialize Environment", .J
— #PB_MessageRequester_OK)
End

EndIf

ClearColor = RGB(0,0,0)

; set the ExitCondition to 0
ExitCondition.b = 0

; Repeat until the ExitCondition is 1
Repeat
ClearScreen(ClearColor) ; clear the output buffer to black

; write out our text
StartDrawing(ScreenOutput())
DrawText(270,240,"Hello, PureBasic!™)

56

StopDrawing()

FlipBuffers() ; flip the buffers to show the user
Delay(100) ; wait for 100 milliseconds
ClearScreen(ClearColor) ; clear the output buffer to black
FlipBuffers() ; flip the buffers to show the user
Delay(100) ; wait for 100 milliseconds

; check the keyboard to see if any key has been hit
ExamineKeyboard()
If KeyboardInkey()

ClearScreen(ClearColor) ; clear the output buffer to black

; put up the question to the user
StartDrawing(ScreenOutput())

DrawText(0,0,"Do you really want to quit (Y/N)?")
StopDrawing()

FlipBuffers() ; show the question to the user

; set the Answers.s variable to be a blank
Answer.s =""

; Wait for a keypress before going any further
While Answer.s =""

ExamineKeyboard()

Answer.s = KeyboardInkey()
Wend

; if the answer is "Y" (or "y"), then set the ExitCondition to 1
If Answer.s ="Y" Or Answer.s ="y"
ExitCondition.b = 1
EndIf
EndIf

Until ExitCondition.b =1 ; End of Repeat loop

End ;end of program

Notice that only two code lines changed. “While” was replaced with
“Repeat” and “Wend"” was replaced with “Until” plus the condition we're
checking for.

You can see how the commands in a WHILE...WEND could be bypassed
completely if the statement evaluated by WHILE is false. In REPEAT...
UNTIL, however, the statement is not evaluated until the end of the
loop, so all of the commands will be processed once before the

57

evaluation. The point is that any time you need a set of commands to
be processed no less than one time, use the REPEAT...UNTIL loop format
over WHILE...WEND.

If you decided to use the REPEAT...FOREVER combination, however, the
loop would never stop. This means that you would not need to have an
end condition to check for, but you will need to have a way to get out of
the loop or the computer will be locked. Getting out of the loop requires
the use of the BREAK command. BREAK breaks out of a loop and places
the execution at the point directly after the loop. You can also put an
argument after BREAK to inform it how many loops (assuming there are
nested loops) you wish it to break from.

58

Chapter 6: Understanding/Using Arrays

When we were talking about the different variable types in chapter 4,
we got into a bit of detail with the String type. This is the variable that
“strings” characters together to form a word. ARRAYS can be
envisioned similarly. As a matter of fact, as you’ll soon see, a string is
an ARRAY!

What Arrays Look Like

In order to define what an array actually looks like, we need to take an
example. Let’s pretend that we had the names of five players, and we
wanted to store them all in memory. We could either set up five
individual variables named “"Namel.s,” "Name2.s,” etc., or we could use
an array.

So, we could use the individual strings and have:

Namel.s ="John”
Name2.s ="Lorelei”
Name3.s ="Fred”
Name4.s ="Betty”
Name5.s ="George”

This format would setup the individual strings and we would have to
recall the variable name in full when referencing a particular player. If,
however, we used an array we would only need to know the array name
and the location of the player within the array. Here is an example of
what that would look like:

NameArray.s(0) = “John”
NameArray.s(1) = “Lorelei”
NameArray.s(2) = “Fred”
NameArray.s(3) = “Betty”
NameArray.s(4) = “George”

But that’s not much different than the string method, is it? Remember
what a string looked like in memory? Here’s a refresher:

1 Ll O el H |l N

That's exactly what an array looks like too, except that it takes the full
piece of data and places it side-by-side, as follows:

59

John | gllorelei | g Fred | gl Betty [|George

So, really, the data inside of the above example is broken down further
into arrays. Thus, as strings are “characters strung together,” arrays
are “data strung together.”

Okay, but what’s the real benefit? As we move on through the various
topics, you'll begin seeing a ton of uses for arrays, but to give an
example: Imagine that you have a list of high scores in a file. You have
100 different scores in there and you want to load it up and display it to
the user. Well, you can either go line-by-line creating 100 variables, or
you can create a single array that has the potential of holding 100
scores. Also, you can easily read each line from the file using a FOR...
NEXT loop that keeps track of where you are in your array during
assigning and reading of values.

Initializing an Array (the DIM command)

The first thing you need to do when using an array is let PureBasic know
what type of array you want and how much data it's to contain. The
second thing to note is that all arrays are automatically defined as
GLOBAL. This means that arrays, regardless of where they are defined
in your program, may be manipulated and read by all of your PB code.

To initialize an array, we use the DIM command. DIM is short for
“dimension,” and it refers to the size of the array. Think of it as you
would the dimensions of a room. It's just a size indicator.

Keeping with our five-name example, here’s how we could define our
array:

Dim NameArray.s(4)

That’s it. In that one statement, we’ve told PB to reserve enough
memory to hold five pieces of data of type string. From here PB will
carve out a memory chunk for us and get it ready to hold any string
data we want to store in there. Why five elements when we have the
number 4 in there? Because PureBasic starts counting from 0,
remember. So if you count 0...1...2...3...4 what you will actually have is 5
elements. An easy way to remember this is knowing that whatever
number you place in the array definition, PB will reserve that humber +
1. Thus, in our example, it would be 4+1, or 5, elements.

As you've already seen, it’s easy to add names to our array. We just
note the location in the array and assign the value.

60

NameArray.s(0) = “John”
NameArray.s(1) = “Lorelei”
NameArray.s(2) = “Fred”
NameArray.s(3) = “Betty”
NameArray.s(4) = “George”

To print these out we would probably want to use a FOR...NEXT loop
because we know the beginning value to start at and we know the
ending value as well. It's a defined size, and FOR...NEXT loops are
perfect for that scenario.

Here is an example that will print all of the contents of our array out on
separate lines. Note the use of the vertical control variable again. This
is to ensure that the lines don’t overwrite each other.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Array Test")=0
MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_MessageRequester OK)
End

EndIf

; Dimension our NameArray
Dim NameArray.s(4)

; Assign our values to the array
NameArray.s(0) = "John"
NameArray.s(1) = "Lorelei"
NameArray.s(2) = "Fred"
NameArray.s(3) = "Betty"
NameArray.s(4) = "George"

TextY =0 ; initialize the starting Y position
StartDrawing(ScreenOutput())
; Loop through the array and print out the values
For Names =0 To 4
DrawText(0,TextY ,NameArray(Names))
TextY = TextY + 16
Next

; display a message so the user knows how to exit
DrawText(0,400,"Press any key to exit")
StopDrawing()

FlipBufters() ; show the output to the user
; wait for any key to be pressed

Repeat
ExamineKeyboard()

61

Until KeyboardReleased(#PB_Key All)

End ; end the program

Arrays are not limited to string values, of course. You can also set them
up as Byte, Word, Long, Float, or as a structure. We have not touched
on structures yet, but will get into much detail on them soon.

You treat Byte, Word, Long, and Float types exactly as you do String,
with the only exception being the definition.

Dim NameArray.s(4) ; creates an array of strings
Dim WeaponArray.b(4) ; creates an array of integers
Dim MissionArray.w(4) ; creates an array of integers
Dim ScoreArray.1(4) ; creates an array of integers
Dim PrecisionArray.f(4) ; creates an array of floats

Note that you don’t have to use the word “array” in the array definition.
This is a practice that I sometimes use to keep straight what’s what in
my coding, but somewhat rarely. The following would work just as
effectively:

Dim Name.s(4) ; creates an array of strings
Dim Weapon.b(4) ; creates an array of integers
Dim Mission.w(4) ; creates an array of integers
Dim Score.l(4) ; creates an array of integers
Dim Precision.f(4) ; creates an array of floats

Multidimensional Arrays

I know that “"multidimensional array” sounds like something out of a
science fiction novel, but it's really just an array that has more than one
dimension. Think of it this way, if someone asked you only for the
length of a rectangle, they are asking for a single dimension. If they
ask for the length and the width, however, then they are asking for
multiple dimensions.

Likewise, arrays can be linear or multidimensional. We've already
described a linear array, where everything moves along as item1-
>jtem2->item3 and so on. But in a multidimensional array we would
see something that conceptually looks like this:

John -> Joe -> Fred -> Bert

Sally-> Betty -> Lorelei -> Anne
(Figure 6.1)

62

Here you have seemingly two lists. The first is a list of male names, and
the second is a list of female names. Now we could have two separate
arrays for this, but there’s no need to. We can simply make an array
with two dimensions. The first dimension is all the male names, and the
second is all the female names.

You can also imagine this as rows and columns if that makes it easier.
In our example, we have two rows of names and each consists of four
columns. Thus, as you would say a room is 9x12 when asked for
dimensions, you could say our array is 2x4.

From a non-conceptual point of view, however, this is not how PureBasic
sees the array in memory. PB sees a multidimensional array as just a
larger single-dimensioned array. The multidimensional components are
for the programmer, not the language. The reason for this is because
it's easier for the programmer to keep track of row/column than it is to
keep track of a bunch of columns that have a bunch of set-based data.

To the programmer it looks like this:

John [) Joe | o Fred | ,lBert

Sally | Betty | llorelel | | Anne

To PB, it looks like this:

L 4
L 4
L 4
v

. . .
L L i L

lohn loe Fred Bert Sally Betty Lorelei Anne

PureBasic handles the details for you (as do many languages that offer
multidimensional array support), so you can have an easier method of
wrapping your mind around your data. As your data needs grow with
your game development concepts, so too will the complexity of how you
piece that data together. Fortunately PureBasic is already prepared to
help you handle most of these difficulties.

So, how do we declare this type of array? As follows:

| Dim NameArray.s(1,3) I

To add to that array, we tell PB the row and column to place an entry
into.

63

NameArray.s(0,0) = "John"
NameArray.s(1,0) = "Sally"

This means that “John” will now sit in row 0, column 0, and that “Sally”
will be in row 1, column 0. Remember that PB counts from 0, not 1.

Accessing the array is a bit trickier because we’'ll need to use a nested
FOR...NEXT loop. We need to do this because we must first grab all the
items from row 0 and then move on to row 1. Here is a program that
demonstrates the entire concept. Pay close attention to the FOR...NEXT
loops so you can see how we handle the rows and columns individually.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Array Test")=0
MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_MessageRequester OK)
End

EndIf

; Dimension our NameArray
Dim NameArray.s(1,3)

; Assign our values to the array
NameArray(0,0) = "John"
NameArray(0,1) = "Joe"
NameArray(0,2) = "Fred"
NameArray(0,3) = "George"
NameArray(1,0) = "Sally"
NameArray(1,1) = "Betty"
NameArray(1,2) = "Lorelei"
NameArray(1,3) = "Anne"

TextY =0 ; initialize the starting Y position
StartDrawing(ScreenOutput())
; Loop through the array and print out the values
For NamesRow =0 To 1
For NamesColumn =0 To 3
DrawText(0,TextY,NameArray(NamesRow,NamesColumn))
TextY = TextY + 16
Next
Next

; display a message so the user knows how to exit
DrawText(0,400,"Press any key to exit")
StopDrawing()

FlipBuffers() ; show the output to the user

64

; wait for any key to be pressed
Repeat

ExamineKeyboard()
Until KeyboardReleased(#PB_Key All)

End ; end the program

If you type in that program and run it, you’'ll see all the names listed
starting with the first row. Try altering the NameRow loop to print out
the female names first (hint: you’ll need to use that STEP command!).

You're not limited to two dimensions on your arrays either. If you want
to move on to three dimensions, you can do so by declaring your array
as follows:

| Dim NameArray.s(4,1,2) I

The statement creates an array that is 5 elements deep, 2 high, and 3
wide. This is just one way to look at it. You may decide to conceptualize
it as a 3D array, being X,Y, and Z as the three values. There are many
ways to visualize this concept.

Since you already know how to access single-dimensioned arrays and
two-dimensioned arrays, you should be able to use that knowledge to
figure out how to access the three-dimensional arrays. Take the above
code for 2D arrays and play around with it until you get the 3D arrays
working properly. It's not that difficult and it's a good way for you to
get used to the dynamic coding issues that arise in game creation.

Re-dimensioning Arrays

You may find it necessary to change the dimension of your array while
the program is running. In other words, you don't want the program to
stop so you can manually change the dimension of the array, you want
the program to change the dimension of the array on its own.

Let’s assume you knew you would have five names for ships and three
names for animals, and you didn't want to have two arrays to cover the
gamut, you would simply do the following:

Dim NameArray.s(4)

...load in ship name data and print...
Dim NameArray.s(2)

...load in animal name data and print...
Dim NameArray.s(4)

...load in ship name data and print...
Dim NameArray.s(2)

65

| ...load in animal name data and print... I

Yes, I showed those twice to demonstrate that you can go back and
forth all you want and PureBasic will keep track of array information.

You can also use variables to dynamically control the size of the re-
dimensioning, as follows:

SizeOfArray = 4
Dim NameArray.s(SizeOfArray)
...load in ship name data and print...

SizeOfArray = SizeOfArray - 2

Dim NameArray.s(SizeOfArray)
...load in animal name data and print...

Loading Data Values into an Array

There is a neat little ability in PureBasic that allows you to put all of your
data in one location, in a readable format, that you can then “load”
from. It's done by using PB’s DATA statement and its support
constructs.

While you can certainly use a disk file to hold all of your data, you may
not wish to for various reasons. Maybe you don’t want someone
tampering with key values that your game needs to run correctly, for
example. Depending on the game, I will generally use disk files for
most of my processing, but I will rely on DATA statements to help keep
some of the more secretive stuff secure. It's not a guarantee of
security, mind you, but it's more secure than an opened disk file. And
even if both the data values and the file are encrypted, it’s still a safer
method.

So why use disk files at all? I find disk files easier to deal with and less
messy. Small pieces of data in DATA statements are fine, but larger
pieces can quickly become confusing because there’s so much going on.
So if you keep the data to a minimum, it's a great resource.

There are a few commands you'll need to be aware of when using this
tool:

e Data: This is the command that tells PB everything on the line is to
be taken as information for later processing.

e Restore: Tells PB where in the program it should start reading data
values. It's based on a label that you create.

e Read: This command tells PB to read an individual element from the
list of data entries.

66

The following piece of code shows you how to create and populate a
data area:

DataSection

NameData:
Data.s "John","Joe","Mark","George"
Data.s "Sally","Betty","Lorelei"," Anne"
Data.s "Fido","Spot","Killer","Tank"
Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"
EndDataSection

The first thing to note is:

| DataSection I

This line informs PureBasic that what follows will be data used for your
program.

| NameData: I

This is the label of the section I'm using for the data being stored. You
don’t have to call it NameData. You can call it pretty much whatever
you want, just remember to be mildly descriptive so it’s not ambiguous.

This label will be used with the Restore command. Make sure you put a
colon (“:") at the end of the name. If you don’t have the colon in there,
PureBasic will not know what the intention of the line is and your
Restore command will not be able to locate the label, and you'll get an
error during compile.

Then we have our group of DATA statements:

Data.s "John","Joe","Mark","George"

Data.s "Sally","Betty","Lorelei"," Anne"

Data.s "Fido","Spot","Killer","Tank"

Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"

You can imagine this as you would an array. There are four rows of
data, each consisting of four columns. So, in essence, we’ve just drawn
a two-dimensional array of names. This is good because we want to
read these values into an array anyway, so their formatting makes it
easy for us to wrap our minds around.

| EndDataSection I

67

And finally, in order to let PB know when you're finished you use the
EndDataSection keyword.

In order to read these values into our array, we’ll need to first Restore
them and then use the Read command in conjunction with an array.
The following code with read the DATA elements into the array:

; Dimension our NameArray
Dim NameArray.s(3,3)

; Go to the front of the data lines for the NameData
Restore NameData

; loop through the data and READ to the array
For NameType =0 To 3
For Names =0 To 3
Read.s NameArray.s(NameType ,Names)
Next
Next

First off, we created an array of 4x4 because we have four rows by four
columns. Secondly, we use Restore to go to the front of the NameData
data set. You should note that there is no colon (“:”) at the front of the
label in a Restore call.

Our next step is to loop through all the rows and columns, using Read
as we go to fill in our array. Each call to Read will grab one element
from the DATA values. The Read command doesn’t care if you put all of
the elements in your DATA values on one line or on multiple lines. Note
that the Read command now requires that you pass the data type you
are looking to read. To use the Read command, use the following
layout:

DataSection
NameData:

Data.s "John","Joe","Mark","George","Sally","Betty","Lorelei", "Anne"
EndDataSection

...which is the same thing as this:

DataSection
NameData:
Data.s "John","Joe","Mark","George"
Data.s "Sally","Betty","Lorelei", "Anne"
EndDataSection

68

The formatting is for the programmer’s benefit, not PB’s. As you can
see, though, it's much easier to understand the second list than the first
because of the grouping component.

The following piece of code is an altered version of our array printout
code. It uses DATA statements to provide the array with the proper
values.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Array Test")=0
MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_MessageRequester OK)
End

EndIf

; Dimension our NameArray
Dim NameArray.s(3,3)

; Go to the front of the data lines for the NameData
Restore NameData

; loop through the data and READ to the array
For NameType =0 To 3
For Names =0 To 3
Read.s NameArray(NameType,Names)
Next
Next

; Set up the vertical control variable
TextY =0

StartDrawing(ScreenOutput())
; Loop through the array we READ and print it out
For NameType =0 To 3
For Names =0 To 3
DrawText(0,TextY,NameArray(NameType,Names))
TextY = TextY + 16
Next
Next

; display a message so the user knows how to exit
DrawText(0,400,"Press any key to exit")
StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
ExamineKeyboard()
Until KeyboardReleased(#PB_Key_ All)

69

End ; end the program

; Here is our data area
DataSection
NameData:
Data.s "John","Joe","Mark","George"
Data.s "Sally","Betty","Lorelei"," Anne"
Data.s "Fido","Spot","Killer","Tank"
Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"
EndDataSection

So what if you had different types of data that you wanted to read into
two different arrays? You would use different labels. Study the
following piece of code and note the use of multiple labels.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Array Test")=0
MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_MessageRequester OK)
End

EndIf

; Dimension our Arrays
Dim NameArray.s(1,3)
Dim ShipNameArray.s(3)

; Go to the front of the data lines for the NameData
Restore NameData

; loop through the data and READ to the array
For NameType =0 To 1
For Names =0 To 3
Read.s NameArray(NameType,Names)
Next
Next

; Go to the front of the data lines for the ShipNameData
Restore ShipNameData

; loop through the data and READ to the array
For Names =0 To 3

Read.s ShipNameArray(Names)
Next

; Set up the vertical control variable
TextY =0

StartDrawing(ScreenOutput())
; Put up a header for the list

70

DrawText(0,TextY,"Names:")
TextY = TextY + 16

; Loop through the Name array we READ and print it out
For NameType =0 To 1
For Names =0 To 3
DrawText(0,TextY ,NameArray(NameType,Names))
TextY = TextY + 16
Next
Next

; put one additional space in between lists
TextY = TextY + 16

; put up a header for the 2nd list
DrawText(0,TextY,"Ship Names:")
TextY = TextY + 16

; Loop through the Ship Name array we READ and print it out
For Names =0 To 3
DrawText(0,TextY,ShipNameArray(Names))
TextY = TextY + 16
Next

; display a message so the user knows how to exit
DrawText(0,400,"Press any key to exit")
StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
ExamineKeyboard()
Until KeyboardReleased(#PB_Key All)

End ; end the program

; Here is our data area
DataSection
NameData:
Data.s "John","Joe","Mark","George"
Data.s "Sally","Betty","Lorelei"," Anne"

ShipNameData:
Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"
EndDataSection

When studying that piece of code, pay special attention to the fact that
NameArray is a two-dimensional array and ShipNameArray is singly
dimensioned. The purpose of this was to demonstrate the use of the
various dimensions when reading in values via DATA commands.

71

Variable Length Data Statements

In the next chapter we will read in data sets that have varied sizes, and
ones that can be changed on the fly without having to hunt through our
code making all the related changes. This means that we won't waste
time remembering all of the places our arrays can be affected.

For now, however, let’s just print out a list of values in a data
statement, change it and using the same code base, print them again.
The focus here is to change nothing other than the actual data
statements.

The first step is to decide on a value that we can use as our closing
value. Sticking with our name convention, let’s say the final value is
simply "STOP.” So, when we create our data set, we’'ll just need to put
one line that has the word “"STOP” in it, as follows:

NameData:
Data.s "John","Joe","Mark","George"
Data.s "Sally","Betty","Lorelei"," Anne"

Data.s "Fido","Spot","Killer","Tank"
Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"
Data.s “STOP”

Now, all we need to do is check each value against the word “"STOP.” If
the value is found, then we're all finished! To handle this process, we'll
want to call on the WHILE...WEND and IF... ELSE...ENDIF commands.
Here’s the example code:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Array Test")=0
MessageRequester("Error!", "Unable to Initialize Environment", J
— #PB_MessageRequester OK)
End

EndIf

; Set up the vertical control variable
TextY =0

; set up our flag value for seeing if we're done or not
FinishedListing = 0

Restore NameData

StartDrawing(ScreenOutput())
; while we're NOT Finished
While FinishedListing = 0
; read a Name from the data segment

72

Read.s Name.s
; if that Name = STOP, then we're done
If Name = "STOP"
FinishedListing = 1
Else
; otherwise, show the Name we read
DrawText(0,TextY,Name)
TextY = TextY + 16
EndIf
Wend

; display a message so the user knows how to exit
DrawText(0,400,"Press any key to exit")
StopDrawing()

FlipBuffers() ;show the output to the user

; wait for any key to be pressed
Repeat
ExamineKeyboard()
Until KeyboardReleased(#PB_Key All)

End ; end the program

; Here is our data area
DataSection
NameData:

Data.s "John","Joe","Mark","George"
Data.s "Sally","Betty","Lorelei"," Anne"
Data.s "Fido","Spot","Killer","Tank"
Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"
Data.s "STOP"

EndDataSection

Play around with this a bit by adding data values. You can put them
anywhere you want as long as you end with a "STOP.” What happens if
you don’t have "STOP” as your last item? PB will toss up an error saying
that it’s run out of data to process. This isn’t a big deal in your testing,
but it will be to the people playing your game, so be careful. Also, you
don’t need to use the word "STOP.” I chose that word because it
seemed applicable. You could use “-1" or “Blibbledeeebloob” if you
wanted to, PureBasic doesn’t care.

Hopefully this is all starting to come together for you. In the next
chapter we'll be learning about another powerful data construct called a
structure, and we'll touch again on how to load variable length values
using the DATA commands.

73

Chapter 7: Understanding/Using Structures

We'll often work with various data sets containing a bunch of related
items, but are all different types. Taking our previous example of
getting an individual’s personal information, let's say we wanted to know
the name, age and grade point average (GPA) of a person. The name is
a String, the age is a Byte, and the GPA is a Float.

While we could use an array for that, the data can become more
confusing as the list of info we want on each person grows. Using a
Structure, however, gives us a more dynamic tool for building data sets
with varied information. This is key because game data has to be
dynamic! Another key point is that arrays take chunks of memory
whether they use them or not. Structures only use what’s needed and
nothing more.

So what does a Structure look like? Here's a little snippet of code that
defines our personal information values:

Structure Personallnfo
Name.s ; name of the person

Ageb ; age of the person
GPAPercent.f ; Grade Point Average of the person
EndStructure

The first line defines the name of the Structure, which in this case is
Personallnfo. Then we have a group of fields that build the actual
variables in the Structure. Finally, we have to let PureBasic know that
we are done configuring the Structure, so we place the command
EndStructure.

Note that we don’t assign any values during the building of our
Structure. This is because our format is merely a blueprint for the data
that can be held by Personallnfo. To actually store data, we must first
initialize the Structure as a Variable, an Array, or a List.

Arrays of Structures
Since we just finished discussing Arrays, let’s start with that method.

| Dim People.Personallnfo(99) I

The above line will create an Array of 100 elements (remember, we
count from 0, not 1!) for our Structure. This is exactly like creating any
other Array, with the exception that we’re using the already defined
structure name as part of the declaration.

74

Obviously we won't be able to use the same type of notation for
assigning values that we use with a Byte Array, so how do we do it?
Consider the following:

People(0)\Name = “John”
People(0)\Age = 36
People(0)\GPAPercent = 3.75
People(1)\Name = “Lorelei”
People(1)\Age = 36
People(1)\GPAPercent = 4

As you can see, with the addition of the “\" and the name of the variable
within the structure, we can assign the varied values with ease!
Retrieving the values is just as simple:

StudentName = People(0)\Name
StudentAge = People(0)\Age
StudentGPA = People(0)\GPAPercent

See how easy that is?

One thing you may have noticed is that I'm not bothering to put the
variable type at the end of each data field. This is because PB already
knows what type field is since it's in the blueprint. The following used
to be an error:

| People(0)\Name.s = “John” I

But it appears in version 4.61 that PB will accept the field with or
without the variable type and not complain either way.

Now let’s take a look at how powerful it can be in a game situation.

The following code will create a Structure that houses information about
different space ships. We’ll be using Data statements in this example,
which we learned about in the last chapter, and we’'ll be creating two
ship types with some differing information.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
MessageRequester("Error!", "Unable to Initialize Environment",
—>#PB_MessageRequester OK)
End

EndIf

; setup our structure

75

Structure Ships

Name.s ; name of this ship

LaserPower.b ; 1-20 points per hit

Armor.b ; 75-125 points depending on the ship

ShieldPower.b ; 50-100 points added on to Armor

TopSpeed.b ; 2 - 4 depending on ship type
EndStructure

; dimension our Fighters
Dim Fighter.Ships(1)

; go to the ShipNameData section
Restore ShipNameData

; use a standard array looping style
Fori=0To 1

; read the data

Read.s Fighter.Ships(i)\Name
Next

; go to the ShipSpecsData section
Restore ShipSpecsData

; use a standard array looping style
Fori=0To 1
; read the data
Read.b Fighter.Ships(i)\LaserPower
Read.b Fighter.Ships(i)\Armor
Read.b Fighter.Ships(i)\ShieldPower
Read.b Fighter.Ships(i)\TopSpeed
Next

; Set up the vertical control variable
TextY =0

StartDrawing(ScreenOutput())
; Step through the Ships array and print
Fori=0To 1
shipText.s = "Ship Name: " + Fighter.Ships(i)\Name
DrawText(0,TextY,shipText.s)
TextY = TextY + 16

shipText.s = "Laser Power: " + Str(Fighter.Ships(i)\LaserPower)
DrawText(0,TextY,shipText.s)
TextY = TextY + 16

shipText.s = "Armor: " + Str(Fighter.Ships(i)\Armor)
DrawText(0,TextY,shipText.s)
TextY = TextY + 16

shipText.s = "Shield Power: " + Str(Fighter.Ships(i)\ShieldPower)

76

DrawText(0,TextY,shipText.s)
TextY = TextY + 16

shipText.s = "Top Speed: " + Str(Fighter.Ships(i)\TopSpeed)
DrawText(0,TextY,shipText.s)
TextY = TextY + 32

Next

; display a message so the user knows how to exit
DrawText(0,400,"Press any key to exit")

StopDrawing()
FlipBufters() ; show the output to the user

; wait for any key to be pressed
Repeat
ExamineKeyboard()
Until KeyboardReleased(#PB_Key All)

End ; end the program

; Here is our data area
DataSection
ShipNameData:
Data.s "Kliazian Raptor", "Weltic Cruiser"

ShipSpecsData:
Data.b 15,125,50,3
Data.b 20,100,75,4

EndDataSection

Most of this should already be familiar with you, so I won't step through

it all. But the pieces that are a bit new are the Structure creation and
how I'm calling the Read.

; setup our structure
Structure Ships
Name.s ; name of this ship
LaserPower.b ; 1-20 points per hit
Armor.b ; 75-125 points depending on the ship
ShieldPower.b ; 50-100 points added on to Armor
TopSpeed.b ; 2 - 4 depending on ship type
EndStructure

A quick glance at the above shows that we're setting up pretty basic
information on a ship. If we were to really build this ship out we’'d need
to think about additional things, such as: cargo space, number of

77

missiles, weapons allowed, weapons available, turning speed, braking
speed, landing bays (for smaller ships to be housed), and so on. This
list can actually get rather large and have many different item types,
which is why the use of a Structure is ideal!

; use a standard array looping style
Fori=0To |
; read the data
Read Fighter.Ships(i)\LaserPower
Read Fighter.Ships(i)\Armor
Read Fighter.Ships(i)\ShieldPower
Read Fighter.Ships(i)\TopSpeed
Next

We're doing the exact same thing with the Read here that we did in the
last chapter, except that here we store the values directly into the
Structure. It's quite easy, isn't it?

Arrays within Structures

One of the things you'll likely want to do is have the ability to
incorporate an Array inside of a Structure. There are many reasons for
this, but for a quick example let’s just say that we want to keep track of
the number of missiles our ship currently has, and also what their
classification is. Certainly we could do this with just adding two
additional fields, but play along with me so you can learn this method.

Taking the last example, let’s edit the Structure a bit:

; setup our structure
Structure Ships
Name.s ; name of this ship
LaserPower.b ; 1-20 points per hit
Armor.b ; 75-125 points depending on the ship
ShieldPower.b ; 50-100 points added on to Armor
TopSpeed.b ; 2 - 4 depending on ship type
Missiles.b[2] ; Missile array of 2 elements
EndStructure

Notice that the only difference from our original example is the
Missiles.b[2] line. This line tells PureBasic that we want to create an
Array within the Structure that can hold 2 elements.

Now you may be thinking that the Array will hold 3 elements, as
described in the last chapter, but Arrays inside of a Structure do not
behave exactly the same as those defined outside of one. This is due to
this type of an Array being a Static array (denoted by the [] and the
lack of a DIM statement). In Structures a static Array doesn't behave
like the normal BASIC array (defined using Dim). This has to do with the

78

handling of advanced API (Applications Programmer Interface) porting
to the C/C++ language. Huh? I know that sounds really advanced.
Basically note that PureBasic is a very powerful language that allows you
to interface with other languages and, because of this, therefore PB has
to make sure it stays compatible with the needs of those other
languages and their formatting.

What this really means to us thought is that a Structure (static) Array of
[2] will allocate an Array from 0 to 1, where a DIM (non-static) Array of
(2) will allocate an array from 0 to 2.

To read in the elements from our DATA statement is a snap. Just do the
following:

; go to the ShipNameData section
Restore ShipNameData

Read Fighter.Ships(0)\Missiles[0]
Read Fighter.Ships(0)\Missiles[1]

Read Fighter.Ships(1)\Missiles[0]
Read Fighter.Ships(1)\Missiles[1]

Check out the example code in the Chapter 7 directory under the file
name “ex7-2ArrayOfStructuresArray.pb” to see this in action.

Basic Structure Lists

For a more dynamic approach to using a Structure, we will turn to the
concept of Lists. A List is similar to an Array in that each element is in a
procession of elements in memory. The primary difference is that a List
is dynamic. You can add and delete elements in a List on the fly, which
means that you can control precisely how many elements are allocated.

One way to visualize this is email. When you receive a piece of email,
the item is placed in a list of emails among all the other emails you've
received. Pretend you have 10 emails in your queue. You read item
number 5 and then delete it. The list just changed dynamically. You
still have the remaining 9 emails in your mailbox, and if another one
arrives, you’ll have 10 again. This is similar to how a List works in PB.

For an example of this let’s pretend that you are launching missiles from
your ship. You are allowed to launch a maximum of 10 missiles at a
time. Each missile can have a speed anywhere from 20-100 units per
second, and can travel anywhere between 500-2500 units before it
fizzles out.

The first step will be to create a Structure for our missiles.

79

Structure Missiles
Speed.w ; Missile Speed (5-20)

MaxDistance.w ; How far can it go (500-5000)
CurrentDistance.w ; How far have we gone?
EndStructure

In this Structure we're including how fast the missile will be able to
travel, how far it can travel, and then putting in a field that let’s us keep
track of how far it has already gone.

| NewList Missile.Missiles() I

The NewList command instructs PB to declare a new List. In this
instance, I elected to name this List Missile since each element will
contain data on a single missile. You may call this whatever you would
like. Note that NewList will automatically make the List global, so there
is no need to do any sort of scope on the definition. Also, whenever
referencing the Structure from this point on, be sure to do it using the
List name (Missile) and not the Structure name (Missiles).

After you've declared a List, you will need a way to add elements to it.
Consider the following snippet:

If AddElement(Missile()) <> 0
Missile()\Speed = Random(15) + 5
Missile()\MaxDistance = Random(4500) + 500
Missile()\CurrentDistance = 0

Else

MessageRequester("Error!", "Can't allocate memory for new element", J
— #PB_MessageRequester OK)
EndIf

The first line informs PB to allocate a portion of memory for a single
element of the Missile() List. As long as the value returned by
AddElement is NOT zero(0), then we can continue on. If, however, PB
returns zero it means that it could not allocate the needed memory for
the element.

Next we start assigning values to our List. This is done by using the List
name following by the () identifier, a “*\" character, and then the field
within the Structure we wish to populate. If you were to put
Missile\Speed = 5 you would receive an error. You must include the
() after the List name.

A quick note about the Random command: I'm using this command to

put in a random value every time the player presses a key. This
command returns a value between 0 and the number you put as the

80

argument. If you want to ensure Random returns a number between 5
and 20, say, you will need to do a little addition against the value
Random returns. In the example of the Speed field I'm doing just that.
I ask Random turn return a value between 0 and 15, and then add 5 to
whatever value is returned. So if Random returns 0, 0+5 = 5, and if it
returns 10, 10+5 = 15. You'll find that in games development you’ll
almost always have uses for random values, so keep this command at
the ready.

Finally, if you look at the Else portion of the code you will see the
MessageRequester command. This command is useful in reporting
errors to players of your game. In this instance, I'm just informing the
user that the program was unable to successfully allocate memory using
the AddElement command. If you enter this command in your PB IDE
and press F1 while it is highlighted, you will see all the options available
with it.

One of the things you’ll want to be able to know is how many elements
are in a list at any given time. This data is acquired using the CountList
command (NOTE: use the ListSize command in PureBasic 5 as
CountList has been deprecated). The following line will place the
number of elements currently in the list into the variable Value.

| Value.w = CountList(Missile()) I

Next we need a way to run through all of our elements, display some
information to the user, and update the elements as well.

ForEach Missile()
MissileText.s = "Missile Speed: " + Str(Missile()\Speed) +
— ", Max Distance: " + Str(Missile()\MaxDistance) + J
— ", Current Distance: " + Str(Missile()\CurrentDistance)
DrawText(0,TextY ,MissileText.s)
TextY = TextY + 16

; now add the speed of the missile to its current distance
Missile()\CurrentDistance = Missile()\CurrentDistance + Missile()\Speed

; if the distance is passed the maximum distance it can travel
If Missile()\CurrentDistance > Missile()\MaxDistance
; delete the missile
DeleteElement(Missile())
EndIf
Next

The ForEach command acts similarly to a For command, except that it's
specifically reserved for use with Lists. It starts at the beginning of the
List (known as the head) and traverses the list all the way until the end

81

(or the tail). Any call you make to the List in this loop will affect only
the element that ForEach is currently pointing at.

At the top you'll see a very large assignment of data to MissileText. All
I'm doing here is putting together a string of information so the player
can see the information on each launched missile. Then I draw it up
and increment the Y counter so the lines don’t overwrite each other.

Immediately following I update the position of the current missile by
adding its cruising speed to its current location. Then I check to see if it
has passed it's maximum traveling distance. If it has, I want to remove
this missile from the List. This is accomplished using the
DeleteElement command. If you call that command with the Missile()
argument, the element will be removed from your List.

Here is the complete source to our basic List Structure example:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
MessageRequester("Error!", "Unable to Initialize Environment",
— #PB_MessageRequester OK)
End

EndIf

ClearColor = RGB(0,0,0)

; setup our structure

Structure Missiles
Speed.w ; Missile Speed (5-20)
MaxDistance.w ; How far can it go (500-5000)
CurrentDistance.w ; How far have we gone?

EndStructure

; setup a new list for the missiles
NewList Missile.Missiles()

; set the ExitCondition to 0
ExitCondition = 0

; While the ExitCondition is O
While ExitCondition = 0

ClearScreen(ClearColor) ; clear the screen to black

; Set up the vertical control variable
TextY =0

StartDrawing(ScreenOutput())

: Step through the missile list and print info

82

ForEach Missile()
MissileText.s = "Missile Speed: " + Str(Missile()\Speed) +
— ", Max Distance: " + Str(Missile()\MaxDistance) +
— ", Current Distance: " + Str(Missile()\CurrentDistance)
DrawText(0,TextY ,MissileText)
TextY = TextY + 16

; now add the speed of the missile to its current distance
Missile()\CurrentDistance = Missile()\CurrentDistance + Missile()\Speed
; if the distance is passed the maximum distance it can travel
If Missile()\CurrentDistance > Missile()\MaxDistance
; delete the missile
DeleteElement(Missile())
EndIf
Next

; display a message so the user knows how to fire/exit
DrawText(0,400,"Press Spacebar to Fire -- ESC to Exit")

StopDrawing()

; see if any key activity has happened
ExamineKeyboard()

; to make sure that we don't just roll-up the missiles
; too quickly. Make sure the player has to let go of
; the fire key before firing again
If KeyboardReleased(#PB_Key Space)
; if the key was released, reset our Fired flag
Fired=0
EndIf

; If the player hits the fire key
If KeyboardPushed(#PB_Key Space) And Fired =0
; make sure we don't have more than 20 missiles out already
If CountList(Missile()) < 19
; add the element of a new missile and populate it
If AddElement(Missile()) <> 0
Missile()\Speed = Random(15) + 5
Missile()\MaxDistance = Random(4500) + 500
Missile()\CurrentDistance = 0
Else
MessageRequester("Error!", "Unable to allocate memory for
— new element", #PB_MessageRequester Ok)
EndIf
EndIf
; set our flag to show that the missile has been fired
; this is so we can make sure the player releases the key
Fired =1
EndIf

83

; if the player hits ESC, set our ExitCondition and quit
If KeyboardPushed(#PB_Key Escape)

ExitCondition = 1
EndIf

FlipBuffers() ; show the output to the user

Wend

End ; end the program

Advanced Operations — Extending Structures
One of the coolest things about Structures is the ability to extend their
abilities without having to constantly change their core.

Imagine that you have a Structure that you’re using for a ship, but you
start thinking that while there are some commonalities between all
ships, there are also some major differences. For example, a freighter
is going to be more concerned with cargo space than it will be with
weapons. A fighter ship will be more concerned with speed and
dexterity than it will be with cargo space. And so on. But they both
need to have an engine, braking abilities, communications, some form
of protection (weapons, shields, armor), etc. So to create two entirely
separate Structures with essentially the same data is redundant.

Extending a Structure requires using the Extends command, as follows:

Structure Ships

EngineType.w ; O=slow, 1=medium, 2=Fast
WeaponsType.w ; O=basic, 1=advanced
Shields.w ; 200-400
Armor.w ; 200-400

EndStructure

Structure Freighters Extends Ships

Name.s ; name of the freigther
Cargo.l ; 20000 - 50000 units
EndStructure

Here we have a Structure defined that has all of our basic ship
elements. Then we have a Structure specifically for freighter-type ships
called, amazingly, Freighters. What you’ll note in the Freighters
definition though is that it contains “Extends Ships.” This instructs PB to
take all of the fields from the Ships Structure and duplicate them inside
o of Freighters. Now all you ha