

Programming 2D Scrolling Games

Updated for PureBasic 4.61 & 5.0

Copyright © 2005-2014 John P. Logsdon
All Rights Reserved.

No part of this publication may be reproduced in any way, stored in a
retrieval system of any type, or transmitted by any means or media,
electronic or mechanical, including, but not limited to, photocopy,
recording, or scanning, without prior permission in writing from both the
author and publisher.

Programming 2D Scrolling Games
Authors: John P. Logsdon (“Krylar”)
 Derlidio Siqueira (“PJoe”)
Graphics and Cover Art: Ric Lumb (“Putty”)
Game Music: Steve Harrison (“Fash”)
Editing: Lorelei J. Logsdon ("Soeth")

All brand names and product names mentioned in this book are
trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks should
not be regarded as intent to infringe on the property of others. The
author and publisher recognize and respect all marks used by
companies, manufacturers, and developers as a means to distinguish
their products.

Programming 2D Scrolling Games by John P. Logsdon & Derlidio
Siqueira is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

You may copy, update, distribute, and transmit this work for non-
commercial purposes as long as you give attribution to the original
authors, provide a link to my website at www.johnplogsdon.com, and
distribute the resulting work under the same license as this one.

Visit me on the web

www.JohnPLogsdon.com

http://www.johnplogsdon.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://www.johnplogsdon.com/
http://www.johnplogsdon.com/
http://www.JohnPLogsdon.com/

PART 1: PUREBASIC BASICS ... 9

CHAPTER 1: WELCOME TO PUREBASIC .. 12
What is PureBasic and who is this Book for? ... 12
Why Learn PureBasic? ... 13
What Will I Need to Run PureBasic? .. 13
The Major Sections of this Book ... 13
Conventions Used in this Book ... 14
Where can I get the source? ... 15
What if there are errors in the book or code? .. 15

CHAPTER 2: FUNDAMENTALS OF PROGRAMMING ... 16
What is a Program? .. 16
Object Code .. 17
Bits and Bytes .. 17
Screen Resolutions and Bit-Depth .. 18
Speed Impact of Higher Resolutions and Bit-Depths 19
DirectX, Peripheral Cards and Drivers ... 20
Creative and Technical Design Documents .. 21
Good Coding Style and Commenting .. 22
A Place to Work .. 23

CHAPTER 3: GETTING STARTED WITH PUREBASIC ... 24
The Good Old “Hello, World!” Program .. 24

CHAPTER 4: THE BASICS OF PUREBASIC ... 30
Variables, What are they? .. 30
Defining Variables .. 33
Commenting Your Code .. 36
Simple Arithmetic .. 38
Cartesian Coordinates .. 39

CHAPTER 5: PROGRAM CONTROL STATEMENTS ... 42
If…Else…EndIf ... 42
Nested IF Statements .. 45
ElseIf Statement .. 46
And and Or Statements ... 46
The SELECT Statement ... 48
Loop Basics ... 49
For…Next Loops ... 50
While…Wend Loops .. 53
Repeat…Until/Forever .. 56

CHAPTER 6: UNDERSTANDING/USING ARRAYS .. 59
What Arrays Look Like ... 59
Initializing an Array (the DIM command) .. 60
Multidimensional Arrays .. 62
Re-dimensioning Arrays ... 65
Loading Data Values into an Array .. 66
Variable Length Data Statements ... 72

CHAPTER 7: UNDERSTANDING/USING STRUCTURES .. 74
Arrays of Structures .. 74
Arrays within Structures ... 78
Basic Structure Lists ... 79

Advanced Operations – Extending Structures .. 84
Advanced Structure Operations – Pointers .. 88
Other List Commands ... 92

CHAPTER 8: WORKING WITH MEMORY .. 94
Creating and Freeing Memory Buffers ... 94
Poke and Peek ... 95
Resizing Allocated Memory .. 97
Copying Memory Buffers .. 99
Comparing Memory .. 101
String-Specific Commands .. 103

CHAPTER 9: PROCEDURES AND LIBRARIES ... 107
Declaring a Procedure ... 107
Passing Arguments and Returning Results ... 110
Including Files .. 114
Libraries .. 115

CHAPTER 10: WORKING WITH FILES .. 119
Creating a File .. 119
Writing to a File .. 120
Reading From a File ... 122
Moving Around Inside of Files ... 124
A Quick Binary Example ... 127
Miscellaneous File Commands ... 129

PART 2: PB GAME TOOLS .. 131

CHAPTER 11: COLORS AND DRAWING PRIMITIVES ... 134
Getting and Setting Colors ... 134
Dealing with Pixels ... 135
Drawing Lines ... 137
Rectangles ... 140
Circles and Ellipses .. 142

CHAPTER 12: WORKING WITH SPRITES .. 143
Basic Loading and Displaying of Sprites ... 143
Rotating an Image to Make Multiple Frames ... 146
Writing directly to a sprite .. 152

CHAPTER 13: HANDLING ANIMATION .. 154
Page Flip Animation ... 154
Animating Images ... 158
Animation Timing ... 162

CHAPTER 14: COLLISION DETECTION .. 166
Bounding Box Collisions .. 166
Pixel-Perfect Collision Detection ... 171

CHAPTER 15: HANDLING INPUT ... 176
Using the Keyboard .. 176
Using the Mouse ... 177
Displaying a Custom Mouse Cursor ... 181
Using the Joystick ... 182

CHAPTER 16: SOUNDS AND MUSIC .. 186
Loading Sounds ... 186
Manipulating Sounds .. 188

Multiple Sounds Playing Simultaneously ... 193
Loading Sounds into Memory ... 194
Overlaying Multiple Sounds ... 197
Playing Music ... 202
Music Modules .. 203

CHAPTER 17: TIMERS .. 205
Frames per Second (FPS) Tracking ... 205
The Rolling Timer ... 207
Locking in at Real Time .. 210

PART 3: .. 218

MIGZ CALLO: LASER BLAZER ... 218

CHAPTER 18: GAME DESIGN ... 220
Background Story ... 220
Game Features .. 221
Art Asset List ... 221
Sound Asset List .. 228
Music Asset List .. 229
Map Asset List ... 229
Technical List .. 229

CHAPTER 19: Z-ORDERING ... 230
What is Z-Ordering? ... 230
Why Use Z-Ordering? ... 231
How to Implement Z-Ordering ... 231

CHAPTER 20: LOADING MAP FILES ... 235
Loading Tiles .. 235
Text-Based Map File Format .. 240
Loading Map Dimensions ... 240
Loading the Map Data .. 242
Binary-Based Map Files ... 244
Loading Binary Maps ... 244
Saving Binary Maps .. 246
Showing a Loaded Map .. 247

CHAPTER 21: MOVING SPRITES ON SCROLLING MAPS ... 252
Player hits a wall .. 252
Screen and World Coordinates ... 259
Scrolling a Map (Theory) ... 260
Edge-Independent Scrolling ... 261
Scrolling Code .. 263
More on Coordinate Systems .. 267
Screen Vs. World ... 267
Robots, HealthPaks, and Lasers…oh my! .. 269

CHAPTER 22: SIMPLE AI ... 271
Robots Doing Stuff .. 271
Robots Firing .. 273
Migz Gets Bored ... 275
Migz Falls Asleep .. 277

CHAPTER 23: PUTTING IT ALL TOGETHER ... 279

The main loop ... 279
Making a level for Migz .. 284
Placing robots and healthpaks ... 285
Code for starting a level ... 287
The Libraries ... 290
Conclusion .. 290

APPENDIX ... 292
LICENSE .. 296
MY OTHER WORK .. 297

PART 1: PUREBASIC BASICS

Chapter 1: Welcome to PureBasic

This book is designed to get you started programming in one of the
most powerful basic-like languages available today. Taking you from
fundamental programming concepts to advanced techniques,
Programming 2D Scrolling Games will have you designing and
developing your own games in no time.

What is PureBasic and who is this Book for?
For years I had struggled in trying to learn the techniques that the
professional game developers used in their creations. I searched the
Internet and read numerous books, but while many of them certainly
provided terrific information, most were far over my head. Slowly,
through much persistence, I began to understand a lot of what went
into game development from a developer’s standpoint.

I’ve also had the very fortunate experience of being around some of the
best and brightest developers in the Game Industry, by having worked
in the capacity of Producer and Executive Producer at various online
game companies.

So with a ton of theory in my pocket, I started using my C programming
skills to get my games underway. Then the dreaded DirectX interface
got in the way. It’s not that DirectX is super-complicated or anything,
but when you’re developing as a hobby you don’t want to spend months
learning how to use a tool that will only help you get to the first ring of
development.

I’ve since used many development languages on the market that were
written with the hobbyist in mind. PureBasic is such a language. But
don’t let that hobbyist tag fool you! Most people would find that a
language such as PureBasic is much more robust and powerful than
their own hand-coded routines in a language such as C/C++. Also, it’s
far simpler to master.

PureBasic was developed with the intent of allowing both beginning and
advanced game developers to get their creations going without the need
to learn or use a ton of low-level coding techniques. PureBasic uses one
of the simplest languages as its base, BASIC. However, where BASIC is
an interpreted language (meaning that as the program runs, the
computer translates each line into machine language before executing
it), PureBasic compiles the code directly to machine language before
executing any lines. This means that a program created with PureBasic
will run without unnecessary steps that can slow it down.

Something equally important about PureBasic is that it’s a REAL
programming language. I have seen a number of products that are
known as “Click and Play” game development systems, but PureBasic
requires that you use your imagination and coding-prowess to make

12

your dreams into reality on the computer. Coding-prowess is what I’ll
be focusing on in this book, although I will touch on imagination and
game-play as well.

If you’ve never programmed before, you’ve come to the right place.
This book starts with the fundamentals of programming while
integrating the PureBasic commands needed to create your future
games. You will be guided into stronger elements that will all be used in
examples to help you gain full understanding of needed topics.

Why Learn PureBasic?
There are many languages out there that you could choose from, so why
pick PureBasic? The simple answer is that PureBasic will get you
developing your games and applications quickly. But it’s also easier to
learn than most languages; you don’t need to learn the underlying
Microsoft DirectX components, and you don’t have to code the majority
of image processing, collision, input, multi-player, or sound routines
that you would normally have to.

If you’re a seasoned game developer, PureBasic will allow you to
prototype games quickly and easily without drastic speed loss and
inherent restrictions of a click-n-play type system.

Finally, PureBasic has game development as part of its function. C and
C++ are used in a lot of game development projects, but they were not
designed with programming games in mind. PureBasic was. Therefore,
when you start out with PureBasic you are in a language that supports
your goal of game development.

What Will I Need to Run PureBasic?
In order to run the PureBasic Integrated Development Environment
(IDE), you’ll need to have a system running Microsoft Windows. While
PureBasic also has versions available for Linux, Amiga, and Mac, this
book will only be focused on the Windows versions.

This book is based on the commercial version of PureBasic. Some of the
example programs may not work with the demo version of PureBasic.
Also, make sure you have the latest version. At the time of this writing,
I am using PureBasic Version 4.61.

The Major Sections of this Book
In order to cover most needs while trying to maintain a non-exponential
learning curve, I have broken this book up into sections.

The first section, “PureBasic Basics” is focused on the fundamentals of
programming and the use of PureBasic. Here is where you will learn
how to create simple applications that will help hone your development
skills.

13

Section two, “PB Game Tools,” is where we’ll start putting images on the
screens and moving them around. Using knowledge gained in section
one, we will also work on animation, collisions, and timing functions.

“Advanced Topics” will be the focus of section three. That’s where we’ll
get into a few tricks that will help build your programming expertise.

Conventions Used in this Book
Up until now, you’ve seen me using the full title “PureBasic” a lot. To
make for easier reading, you’ll often see me refer to PureBasic as simply
“PB.”

Throughout this text you will see boxes that are filled with bold text.
These are “code boxes” because the text inside is actual PB code. Here
is an example:

Result = OpenScreen(800,600,16,”My Game”)

You will also notice the following special characters on some lines in the
code:

 and 

Such as:

If Shields < 100 and Armor > 100 and 
  RepairAbility < 10

 Gosub DestroyShip
EndIf

The “↵” symbol means that the line is continued on the next line.
Depending on the interface you’re using to read this book (iPad, for
example), and your selection of font and font size, you will see the lines
of code break in various locations. In the actual PureBasic development
environment you will need to type the line as one full line because
PureBasic will not allow multiple line entries. Note that the next line will
include the “→” symbol to further denote that the line is meant to be
entered in as part of the previous line. The goal of these two symbols is
to help you know which lines stay together. Unfortunately, it won’t be
an exact science since there are so many combinations of devices and
layouts that I could not possibly account for, so please be sure to use
care when entering code from the text. Also, always keep in mind that
you can download the source code, which will not have this issue since it
is already in PureBasic’s required format.

14

Where can I get the source?
You can download the source at
https://www.mediafire.com/folder/aajnae2bi4ta4/Pure_Basic

What if there are errors in the book or code?
While both myself and the editors have tried to catch all the errors, it's
likely the case that something slipped past all of our testing.

I am no longer supporting this book, which is why it has been released
for free.

15

https://www.mediafire.com/folder/aajnae2bi4ta4/Pure_Basic

Chapter 2: Fundamentals of Programming

What is a Program?
A program is simply a set of instructions that the computer executes in
some sequence. There are many types of programs that you are already
familiar with, including Netscape, Microsoft Windows, America Online,
and so on.

In order to create these programs, teams of developers (or
programmers) write thousands of lines of code using languages such as
C, C++, Visual Basic, etc. Typically a developer is responsible for a
certain section of the project and codes exclusively on that section. The
code developed is then shared with other developers that can
incorporate it with their code. In a sense, this is what’s happening with
PB.

The developer of the PureBasic language, Fantaisie Software, has
programmed the graphics, sounds, input, multi-player, and many other
routines that you, the game developer, can incorporate into your
project.

Here is an example program to give you an idea of what code in
PureBasic looks like:

If InitSprite() = 0 Or OpenScreen(640, 480, 16, "Test") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
Else
 ClearScreen(RGB(0,0,0))
 StartDrawing(ScreenOutput())
 DrawText(280,240,"Hello, World!")
 StopDrawing()

 FlipBuffers()

 Delay(5000)
EndIf

End

Notice that most of the text is very English-like. This is how most
programming languages are these days. There are still some languages
(such as Assembler, which CAN be used inside of PureBasic) that are
much more cryptic when compared to the easily-read PureBasic
language.

16

Object Code
When you have completed a project, you must request that PureBasic
translate the code in your project to something the computer can
understand. This process is known as “compiling.” What this process
does is basically take your English-like commands and turn them into
Object Code, which is also known as Machine Code.

Object Code is the native language of your computer’s processor. It’s
nearly impossible to read since it is purely numerical, which is why we
develop in languages such as PureBasic and allow the compilers to do
the conversions for us.

Bits and Bytes
Before going much further, let’s touch on the topic of bits and bytes as
you’ll need to know what these are for some of the information coming
up.

A bit is the smallest unit of storage in a computer. Since computers
actually read only 0’s and 1’s, each is measured as a bit. For example,
the letter “A” consists of 8 bits (or eight 0’s and 1’s) that, when
combined, total the numeric value of 65.

A byte is a combination of 8 bits. So, in order to get that letter “A,” we
must use a byte value. Each bit in a byte has a value assigned to it
based on its position in the byte.

Now, starting from the right side you’ll note that each number increases
by a factor of itself. 1+1=2, 2+2=4, 4+4=8, etc. Each of the little
squares in that diagram represents an element of the byte, or a bit. In
actuality, those boxes would contain either a 0 or a 1, not the number
shown in that diagram. But referring to the diagram, the byte total
would accumulate the represented number if the bit contained a value of
“1.” Here’s an example:

Since the first and seventh bits are flipped on, we know to take the byte
values of “1” and “64” (as per the previous diagram) and add them
together, thus making this byte value a total of 65. If all the bits are set
to 1’s, you would have to add all the values up in a byte by element and
you would get the byte value of 255, giving you 256 total states. Keep
in mind that a computer counts from 0, not 1. So if you take all the bit

17

values and set them to 0, you’d have a value of 0. If you set them all to
1, you’d have a value of 255. If you count from 0 to 255, keeping 0
inclusive (as in “0…1…2…3…etc.), you would count 256 when finished.
So, again, you have 256 elements in each byte, but the maximum
actual value is 255 because of the 0 start.

Screen Resolutions and Bit-Depth
In order for PB to start up a program, it must know what screen
resolution you’re going to use, and its bit-depth. Screen resolutions
come in all shapes and sizes, and which ones are available to you is
based on the quality of your video card.

You may have heard people use the terms “640x480,” “800x600,” and
“1024x768.” Those are a few of the many resolutions available.
Basically, the first number describes the number of pixels that go across
the screen (the width). The second number describes the number of
pixels going from the top to the bottom of the screen (the height). So,
“640x480” simply means that there are 640 pixels going across and 480
going from top to bottom.

The biggest advantage of having your game use a higher resolution is
that the images displayed are crisp and you can fit more on the screen.
The biggest disadvantage is that it makes it a speed hog. I’ll get into
why there is a slow down in the next section.

Bit-Depth is the number of bits used to display the color of each pixel.
You can choose from 4-bit, 8-bit, 16-bit, 24-bit, and 32-bit.

4-Bit Color: As you may recall in our discussion on bits and bytes, 4 bits
can only contain a number up to 16. So in 4-bit mode, we have 16
colors to work with. In this day and age, that's pretty pointless, but if
your OS supports it you can always push your personal boundaries and
try to make something work at such a low color value.

8-Bit Color: 8 bits can only contain a number up to 255, which, starting
from 0, is 256 states. This means that each pixel drawn can be 1 of 256
colors (0-255). Sounds very limiting, huh? It is, but keep in mind that
a lot of games were made using this bit-depth. Look at most any game
made between 1987 and 1997 and you’ll see 256 colors in action. 8-bit
caused most games to work with palettes. Palettes allowed the artist to
re-assign color values to the various 256 spots. This made it possible to
have various shades of the same color, which made color transitions
much more pleasing to the eye. Unfortunately, it also meant that the
artist would lose a color for each shade created. As you might imagine,
it was quite the challenge to handle art development for this
environment. This depth also made it so the programmer would have to
write code to handle the various palettes created.

18

16-Bit Color: In the late 90’s, 16-Bit color on the PC became a way to
produce better quality graphics. This is because the artists were no
longer held to the 256 color limitation. With 16-bits the artist can use
up to 65,535 colors per pixel. At that level of colors, palettes pretty
much got tossed out the window. Artists started creating much more
stunning graphical elements. This was a huge step in the game industry
because it allowed for more realistic environments. The challenge, as
we’ll see in a bit, was that use of 16-bit greatly affected the speed of
games.

24-Bit Color: 24-bit, also known as True Color, gives us the ability to
use one of 16,777,215 colors per pixel. That’s a TON of color choices…
more than the human eye can distinguish, actually. It’s argued that
there’s no real point in going any higher in color on video cads and
printers since we won’t be able to distinguish the subtleties anyway.

32-Bit Color: 32-bit is really just an extension of 24-bit. It has the
same number of colors because the first three bytes (the 24-bit
component) are for Red, Green, and Blue. But the addition of 8 bits
gives two advantages: 1) It keeps the memory “byte aligned,” meaning
that since Intel-based chips move data along the bus at 32-bits per
move, 32-bit color moves the data without adjustment. 2) While the
original idea was that the 4th byte (bits 25-32) were simply for speed
and thus discarded upon hitting video memory, it was decided to put
that 4th byte to use. Now that 4th byte is useful in “alpha channeling,” or
“masking.” This means that we can specify how we want to merge a
color of a pixel when it overlays another pixel. So instead of overwriting
a blue pixel with a red pixel, for example, we can display a pixel at that
location that is a merger of the two colors thus giving the effect that one
pixel is crossing over another, which gives the illusion of depth.

Speed Impact of Higher Resolutions and Bit-Depths
The higher the resolution and bit-depth, the slower your game will run
(except for 32-bit over 24-bit. 32-bit does run faster than 24-bit due to
the architecture). The reason for the speed differences comes down to
how many pixels must be displayed per screen and how many bits each
pixel contains, and also how data is moved back and forth using proper
alignments...meaning that a computer will more rapidly move a 32-bit
value than it will a 24-bit value because of the architecture of a
computer. 24-bit values require that the computer do offset-
computations where a 32-bit value does not require the same
calculation since the machine is built to work with such values.

Let’s use the case of 640x480 with a bit-depth of 8. Since 8-bits is 1
byte, we are in effect saying that we need to draw 640 bytes x 480
bytes for every screen we render. To put that into perspective, we have
to use 307,200 bytes for each rendered screen. That’s A LOT of bytes.
If we increase that bit-depth to 16, then we have to draw 2 bytes for
each pixel, thus increasing our total byte use to 614,400. Now granted,

19

the pictures are a bunch prettier, but that’s double the bytes required
for each render.

To make this even more impressive, let’s say our video mode is
1024x768 with a 32-bit depth. The math is 1024x768x4 (since 32-bits
is 4 bytes). The total bytes per render equals 3,145,728!

If you’ve ever heard the term “Frames Per Second,” you’ll start getting
why this is so important. Commonly known as FPS, it’s the number of
frames of animation your game can show every second. This is
important because the human eye requires a minimum number of
frames per second to be fooled into believing that an image is actually
“moving.” If the FPS is too low, the eye will pick up the choppy effect
and will not be fooled.

Screen resolution and bit-depth affects this number because of the
number of bytes required to make a single frame of animation.
640x480x16 will take twice the amount of time to accomplish this than
640x480x8. 1024x768x32 will take quite a bit longer than 640x480x8!
So the higher the resolution and the higher the bit-depth, the slower
your FPS, and that’s BEFORE you get into other elements that impact
FPS such as Artificial Intelligence and various graphical effects.

The good news is that today’s video cards are very speedy. You almost
have to work at slowing the things down. But, trust me, you can if you
really try.

DirectX, Peripheral Cards and Drivers
PureBasic uses a proprietary graphics engine that sits on top of DirectX.
DirectX is simply a set of routines that work within the Microsoft
Windows environment to handle graphics, sounds, input devices, etc. It
was written in such a way that peripheral manufacturers could easily
support powerful multimedia enhancements by just providing updated
drivers.

Some of you may be wondering why you wouldn’t just use a
programming language other than PureBasic to interact with DirectX.
The primary reason is that DirectX can be somewhat cryptic, especially
for newer users. You would need to understand Windows programming
architecture and understand the fundamentals of COM (Component
Object Model) programming to really utilize the power of DirectX
directly. PureBasic allows you to focus on creating your game or
application in a simple to use, easy to learn language that is extremely
fast and powerful. In a nutshell, PureBasic lets you get to work on your
project without having to understand all the fundamentals of Windows
and DirectX programming.

Peripheral Cards and Drivers: Peripherals are basically anything that you
add to your computer that has some type of interaction with you/your

20

computer. Examples are: video cards, a mouse, a joystick, a keyboard,
etc.

With so many brands of peripherals on the market, developers were
having a difficult time programming their games to support the
functions of each one. DirectX helped address this problem by requiring
the various manufacturers to conform to the DirectX model—assuming
the manufacturer wanted to get Microsoft DirectX certified.

In order to stay up on the latest DirectX versions, the manufacturers
have to constantly update the drivers for each peripheral based on
direction from Microsoft’s DirectX developers. Drivers are simply a set
of interface programs that DirectX uses to communicate with the
peripheral. You should always ensure that you have the latest drivers
for your peripherals, and you should make sure to inform the players of
your games that they should install their latest drivers as well.

Creative and Technical Design Documents
One of the most important things to consider when beginning any
development project is design. Designing is just the process of making
sure you have a road map of where you want to be at the end of the
development cycle. Without a design you’ll basically be playing it by ear
in your development. For small projects, this is usually not so bad, but
the larger the project becomes the more likely you’ll have a lot to re-do
if you don’t plan properly.

So how do you go about designing? Depending on the scope of your
project, a design may only be a couple of quick sketches and a few lines
that help to remind you what to look for as you develop. But larger
projects require more detail and typically are separated into “Creative”
and “Technical” design documents.

I have seen creative design documents that are over 1,000 pages long!
They’ve included the main story line, profiles for each character, weapon
details, game level/map details, NPC (non-player characters) details,
etc. The technical design documents are usually smaller, ranging from
30-250 pages.

Don’t be too concerned here, though. Keep in mind that these
documents are for games that have millions of dollars backing them.
The biggest design document I’ve written for personal use was about 50
pages long and the technical document was about 20.

When working on your creative design document, you’ll want to focus on
a number of questions, such as:

1) What is the game about? If I had to sum it up in ONE sentence,
what would I say?

21

2) What type of game is it? First-person shooter, role-playing game,
strategy, etc.

3) What are the primary features? Cool graphics, game-play, multi-
player, etc.

4) Who is the main character…or are there many to choose from, and
what do they look like, etc.?

5) Where is the game set? Is it ancient Rome, a distant galaxy, a
cloud molecule, etc.?

6) Who are the bad guys, and why are they bad guys?
7) What do all the bad guys look like, and what are their names, etc.?
8) What is the ultimate goal of the player and what are the main

obstacles stopping that player from attaining that goal?
9) What will the player’s interface look like (also called the HUD

“heads-up display”)?

There are many more questions you could ask yourself, but this should
get you started on seeing what creative design is all about.

Now, you may just want to re-create a game that has already been
done. If so, you probably won’t need to deal with a creative design
since you’ve played the game so much that it’s ingrained in your mind.
But either way, you’ll probably want to write up the technical design
document.

Technical design documents are simply a list of technical issues that
you’ll likely face when developing your game, and the steps you plan to
take in tackling these issues. A simple example of this may be the
desire to have different explosion types based on the weapon being
used by the player. This is a simple example because you can just
check which type of weapon was fired and then tell your program to
display the respective explosion upon contact.

A more complex example would be unit movement. Let’s say that you
have a bunch of units in your army and you need to move them from
point A to point B. To make matters worse, your maps include obstacles
such as water, trees, and buildings. You may think that this is a simple
task, but it’s pretty complex because you have to remember that you’re
just displaying little graphical images…they don’t know there are trees in
the way! With this you would either write down “To Be Resolved” in
your document, or you’d go and study up on path-finding algorithms
such as A*. Don’t be too concerned here…there are a lot of libraries
that have already been written to help you handle these types of issues.

Good Coding Style and Commenting
Everyone has his/her own style with how to do things, but some styles
are based more on being different than being clear. If you ever have
the notion to allow other developers to use/modify your code and/or
work on a team with you, I would highly recommend that you adopt a
style that is accessible.

22

Commenting code is the most important, yet most overlooked, aspect of
development. I can think of nothing worse than seeing pages and pages
of code without a single comment as to what the code does. This makes
for a seriously difficult time in maintaining or upgrading and should be
avoided at all costs. I’ve fallen for this trap and have found myself
confused at my own code after not seeing it for months.

To make matters worse, commenting is EASY. All you have to do is
write a quick line that describes what a section of code is for.

A Place to Work
Okay, you may think this part is goofy but it’s probably the most
important part of your development project. Game developers are
notoriously lazy. You need to find a place where you can focus on your
game designing and development that feels comfortable and fits your
mood.

To give an example, my office is full of gamer junk. There are toys all
over the place and there’s a killer sound system that keeps the music
going so I can’t hear anything else going on in the house that may
distract me. I don’t play with the toys (most of the time), but they set
the tone that I’m a game-developing junkie and that keeps me in the
mood to create! Another cool part of this is that when I face
development roadblocks, I don’t easily give up. Since I’m in a
comfortable development place (my happy place!), I’m already in the
right mindset to tackle tough issues.

Again, I know this sounds goofy, but if you don’t make sure you’re set in
this department you’ll soon find yourself slowly drifting away from your
efforts.

To move up with the times since the original writing of this book,
multiple monitors are the way to go. I have five (yes, 5!) monitors at
my desktop now. It's taken a while to build this system up, of course,
but at this point I can't imagine life as a developer with only one
monitor. If you're still stuck in single-monitor land, you don't know what
you're missing! But, yes, I still have the toys on my desk.

23

Chapter 3: Getting Started with PureBasic

The Good Old “Hello, World!” Program
Almost every programming book I’ve ever seen starts out with a
program that simply puts “Hello, World!” on the screen. Typically I dare
to be different, but in this case I’m going to keep with the norm.

OpenConsole
First let’s go ahead and see what the OpenConsole command is like.
Type in the following code exactly as shown, save the file and then ask
PB to run it by pressing F5 on your keyboard.

 OpenConsole()
 Print("Hello, World!")
 Delay(10000)
 End

Now let’s break this down so you can see what’s going on.

 OpenConsole()

This command instructs PB to open up a DOS-like window, also known
as a Console Window. It’s the area of the Operating system that is non-
graphical, giving the user a more direct textual approach to
development.

Why would anyone want to use this? Well, a number of programs do not
need the heavy (or even light) graphics and visual appeal usually
ingrained in Windows applications. For example, you may have a
program that just runs through a bunch of files and lets you know how
many total characters there are in them. Why go through days of
building a graphical interface when you can easily snag that information
with a few lines of code?

To see a console application at work, you can go to your Windows
START-RUN area and type in “ping www.purebasic.com” and you’ll see
the data spit out in white on a black background with no graphics
present.

 Print(“Hello, World!”)

The Print command tells PureBasic that you wish to display some
information to the user. This is a very straightforward command that
accepts the text you wish to display as an argument contained in the
quotes.

24

 Delay(10000)

By using Delay we effectively pause the application for a set number of
milliseconds. This will give us time to read the output of the application
before it quits. You would likely want to use a method of waiting for a
key press before exiting, but we’re going to keep it simple for now.
Note that I used the value of 10,000 as the argument. Since the
argument is in milliseconds, the Delay command will hold up the
application for 10 seconds.

 End

While PB is smart enough to end on its own, once the application is
finished, this command is not really necessary. But I find that it is
always good practice to include as it is always wise for the programmer
to rely on his/her ability to make sure loose ends are tied up, not
something that should be easily relinquished to the language one uses.

OpenWindow
If you’re looking to open up a standard Windows application window,
you’ll be calling PB’s OpenWindow command. Again, to see this in
action, type in the following code exactly as you see it and then run it.
Don’t forget that the  and  are not to be typed in, they’re just to
denote that the text is all part of a single line.

 OpenWindow(0,200,200,200,100, ,"Hello, World Test Application", 
  #PB_Window_SystemMenu | #PB_Window_TitleBar)

 StartDrawing(WindowOutput(0))
 DrawText(0,0,"Hello, World!")
 StopDrawing()

 Delay(5000)

 End

There is a lot of information in that code. Here’s the breakdown:

 OpenWindow(0,200,200,200,100, ,"Hello, World Test Application", 
  #PB_Window_SystemMenu | #PB_Window_TitleBar)

The OpenWindow command has a number of arguments available to
it. To get the full effect of these, please highlight that command in your
PB IDE window and press the F1 key.

25

In this example, I’m telling PB to identify this window as “0”. That’s the
first argument, which is used so you can set a numeric identifier for
each window you create. You can also use #PB_Any to have PureBasic
assign a unique value for you, which, as we'll see in later chapters can
be quite useful.

The next two arguments tell PB where you want the top-left edge of the
window to start, as default. In this example, I’m instructing PB to start
the window at position 200,200 of the screen.

Next I tell PB I want the window to be 200 pixels wide by 100 pixels
high in its internal area.

Then I sent along the name that we want to display in the title bar for
this application.

And finally I send two flags to the function on how I want the window to
operate. In this instance I want to make sure there is a System Menu,
an “X” in the upper-right to allow the user to close the window (though
in this example I’m not checking for mouse clicks so it really won’t allow
the “X” close option), and also I want to make sure that the title bar is
displayed. The title bar display is the default anyway, but I wanted to
show that multiple flags can be used by using the “|” operator (which is
the OR operator).

Again, make sure to hit F1 after highlighting the command in your IDE
to see the full options.

 StartDrawing(WindowOutput(0))
 DrawText(0,0,"Hello, World!")
 StopDrawing()

The StartDrawing command informs PB where you want it to draw
various items, such as text, circles, pixels, etc. This command accepts
an argument that allows you to specify where, exactly, something
should be drawn. In our example, we’re telling the command to use our
current window by passing the 0 in WindowOutput. Remember that the
first argument we passed to OpenWindow was 0, so we'll need to use
that here.

DrawText is similar to the Print command we used back in the Console
example. Its purpose is to put text up on a window or game window
screen. In a little while we’ll be covering the use of various fonts and
colors we can use with this command. The 0,0 at the beginning of the
call is the x,y coordinate to display our text. We will discuss coordinates
shortly.

StopDrawing is the command that informs PB you’re done drawing to
the selected surface.

26

 Delay(5000)
End

Here, again, we delay the execution of the program so you can see
things happening. This time I’ve set it to 5 seconds.

We’ve already touched on the End command, but again it’s just to tie
things up and tell PB you’re done with the program.

OpenScreen
Our final form of screen control is the one that you would most
commonly use for full screen games. Sample code:

If InitSprite() = 0 Or OpenScreen(640, 480, 16, "Test") = 0 
 MessageRequester("Error!", "Unable to Initialize Environment", 
 #PB_MessageRequester_Ok)
 End
Else
 ClearScreen(RGB(0,0,0))
 StartDrawing(ScreenOutput())
 DrawText(280,240,"Hello, World!")
 StopDrawing()

 FlipBuffers()

 Delay(5000)
EndIf

End

As with the last two examples, let’s break this down.

If InitSprite() = 0 Or OpenScreen(640, 480, 16, "Test") = 0

The InitSprite command let’s PB know that you want it to use the game
graphics commands known as “sprites.” We’ll be discussing sprite
commands in full detail later in the book, for now though just know that
when performing any commands regarding to full screen games, open
through OpenScreen command, you must be sure that the user
environment is capable of dealing with them, and InitSprite checks this
out for you.

A video card with enough video memory and proper drivers (i.e.
DirectX) must be installed on the user's system. InitSprite will do that
checking and tell us if the system is OK for game-specific needs. There
are some other steps we should consider to tell something to the user

27

when his/her system is not capable of running our program, but we’ll
get to that later. For now just keep in mind that for full screen games
InitSprite must be at the beginning of your program, before any other
graphic commands are called.

Also notice that we are using an IF here and comparing the value
returned by InitSprite to zero(0). If the value returned is 0, then
InitSprite was not able to setup the system properly and therefore we
need to let the user know there was a problem and then exit.

The OpenScreen command is where we’ll be setting the width, height,
bit-depth, and title of our application. Very similar to the OpenWindow
command we discussed before, but with a number of differences. First,
note that there are no flags usable in this command, and also that there
is no starting X and Y location for the window. This is because
OpenScreen is used for full screen, non-windowed applications, most
notably games.

Another thing that OpenScreen does is set up the environment to have
multiple buffers. Buffers are areas of memory (most commonly video
memory) that your program writes graphics too. Once the buffer is
completed, your program shows the completed buffer to the user and
then begins writing the new graphics to the next buffer.

Note that we also check the return value of the OpenScreen command
to make sure it’s not zero(0). If it is, we display an error message and
exit the application.

There are some commands in PureBasic (not all of them) that, after
performing the action they are meant for, return a value to inform us if
they were successful or not. Generally, if the returned value is NOT
zero(0) it means that the command has performed OK. In programmer-
speak, when a non-zero value is returned from a command, we say that
the command has returned a "True,” or “Success!” On the other hand, if
the returned value is 0 (zero), then it means that the command could
not perform its assigned task. In that case, we use to say that the
command has returned a "False," or “Failure.” It’s up to the programmer
to handle these True and False answers from PB commands accordingly.
Despite the importance of these returned values, we're not going to deal
with these worries for now. Why will we dare to neglect such precious
information? Because the code becomes more complicated for beginners
to understand. There are some very basic concepts that must be
introduced first. Once we have introduced all the concepts you must be
aware in order to deal with the command results, then we'll start to
handle them in the way they deserve to be handled! In other words,
we'll teach you how to cook, that's the deal. But first, we must teach
you how to setup some fire, and how to choose from the various models
of pans, and which spices to put in the sauce...

28

Whenever we move from buffer to buffer, most often we will want to
make sure there’s nothing on that buffer. So we clear it.

 ClearScreen(RGB(0,0,0))

The ClearScreen function will clear our screen with a particular color.
Note that we use the RGB command to get the final color. There are
three arguments for the RGB command: Red, Green, and Blue. By
placing a 0 in each argument, we have set the color to clear the screen
with to black.

 StartDrawing(ScreenOutput())
 DrawText(280,240,"Hello, World!")
 StopDrawing()

Just as in our last example, this grouping of commands will draw our
desired text to the screen. You should see thought that the argument
inside of the StartDrawing command has changed. The ScreenOutput
command returns the screen device used for 2D drawing operations.

 FlipBuffers()

Now that we’ve drawn our text to the buffer, we need to display that
buffer to the user. The FlipBuffers command does just this. This will be
discussed in much greater detail in later chapters.

And we again finish with the Delay and End commands.

I know that I’ve pointed a lot to later chapters for some definitions. I
apologize for that, but to try and cover these pieces in detail now would
be premature and confusing. We’ll get to them soon enough, though. I
promise!

29

Chapter 4: The Basics of PureBasic

Variables, What are they?
An important part of any PureBasic program is the ability to have
various forms of data. It can be numerical, character, memory,
graphical, etc. All data can be entered into your program manually, but
this doesn’t allow for the dynamic nature of most applications.

So how can we store a value that we can update at any time? We do so
by using variables.

A variable is simply an area of your computer’s memory that has been
set aside for holding values that you wish to hold and manipulate.
Variables are created real-time by the developer. The amount of
memory they consume depends on the type of variable required to hold
the proposed value. Here is a list of variable types in PureBasic:

 String (also known as Scalars)
 Fixed String
 Byte
 Ascii
 Character
 Word
 Unicode
 Long
 Integer
 Float
 Quad
 Double
 Pointer/Handle

Strings: A String is simply a collection of characters. For example,
“PureBasic” is a string of 9 characters. Why is it called a String? The
idea is that the “P” is tied to the “u” and that is tied to the “r,” and so
on. So if you were to take all those letters and “string” them together,
you would get the word “PureBasic.” Consider the following:

Individually, just like letters in the alphabet, these are simply
characters. But those arrows demonstrate the way PB will look at a
string. Each letter points to the next and treats them as a word.

Strings are used for any textual information that you will deal with.
Examples would be the player's name, the planet they set up on, the

30

description of that planet, the ship they’re flying, the ship’s description,
etc.

Byte: A collection of 8 bits. As you may recall in Chapter 2, a byte may
hold any number from 0 to 255 (a total of 256 elements). PureBasic
byte-type variables, though, are signed variables. This means that
instead of using the whole set of 8 bits for holding values between 0 and
255, they'll use only 7 bits for this purpose and save the very last one to
serve as a sign. If the sign is off (0) then the value is positive, if it is on
(1) then it is negative. Because of this, the possible values contained
within a byte variable in PureBasic are –128 to +127.

Why is it –128 to +127 and not –127 to +127? This has to do with the
sign bit. Consider the following:

This layout gives us the value of 0. 0 is neither positive nor negative, so
the sign bit is not enabled. But what happens if we decide to enable the
sign bit?

Now we have an issue. Since 0 cannot be negative, the CPU will look at
this as both a sign bit action and as 128. So we have –128. But what if
we did this:

Doing the above would give us –127 because the sign bit is not the only
bit enabled. It is only when it is solely enabled that the CPU will
consider it both negative and 128.

Often times a programmer will use Byte values for numbers that are
certain to be very small. Since it’s always wise to use as little memory
as possible, programmers look for every opportunity to use a Byte
variable size. An example usage for a Byte value in a game would be
ship types. Let’s say that you have 18 different ships that a user may
purchase throughout the many levels of your game. Since 18 is
definitely never going to go beyond the positive limit of 127, you may as
well use a Byte value to store the ship numbers.

31

Ascii: Similar to a byte, but the values it holds are from 0 to +255,
which allows you to use the extended Ascii character set.

Word: A collection of 16 bits, or 2 bytes. A Word variable is signed, like
the Byte value discussed above, and therefore follows the same rules as
the Byte value. But the range of numbers it can hold is -32768 to
+32767. Again, note that the negative value is one higher than the
positive. To understand this, please review the Byte description above.

I have used Word values on a number of things in a game, and have
found it probably one of the more common variable types in things I’ve
done. One example is my character’s position in the game world. It’s
not often that you’ll have a game map be so large that it will go beyond
32,767 world units. It’s possible, certainly, but it would make for a
massive map. I tend to keep my maps less than that though, so I most
often use a Word value (or a Float) to store my map locations.

Unicode: Similar to Ascii, but much larger. This type can hold values
from 0 to +65535. You would usually use this type for multiple language
support where diverse characters are required.

Long: The default variable type for PureBasic. A Long is also known as a
“Double Word.” This is because it consists of 4 bytes, or 32 bits, so it is
exactly two times larger in bits than a Word is. And, like a Word and a
Byte, a Long variable is signed. Its range is -2147483648 to
+2147483647.

High scores is the easiest example here. When you are running up your
player’s score, use a Long. It’ll hold very high numbers. If you ever
foresee going beyond the maximum possible value in a Long, go with a
Float.

Integer: Depending on your operating system, the Integer may support
4 bytes (32-bit OS) or 8-bytes (64-bit OS). If 4 bytes, the Integer may
contain values from -2147483648 to + 2147483647; if 8 bytes, the
Integer can hold -9223372036854775808 to +9223372036854775807

Floats: A Float value is important when you are looking for more
precision in your calculations. The term “Float” means “Floating Point,”
and it’s simply referencing that the decimal point can float (or move)
from one position to another in a value.

For example, you may have the value 10.75. If you multiply that value
by 10, you’d get 107.50. Notice that the decimal point “floated,” or
moved, over one space to the right.

Floats are particularly useful when making precision movements from
one screen location to another. They allow for smooth movement
because they can have such tiny adjustments in values. Also, let’s say

32

you have a big space freighter that takes a while to reach top speed. If
top speed is 5, counting by 1 isn’t going to take long at all, but counting
by 0.00001 would take quite a while.

I tend to use Floats when I want to move my sprites at really slow
increments, mostly for smoothing movement.

Quad: This type is similar to the 64-bit Integer, so it's 8 bytes and can
hold values from -9223372036854775808 to +9223372036854775807.

Double: A Double is essentially a 64-bit float. It has 8 bytes, but since it
(like the Float) supports scientific notation, it is essentially limitless.

Pointers/Handles: A memory value that holds the position of another
value. For example, when you load an image, you will have an image
handle that you use from that point on to reference that image. So, in
essence, you are pointing to that image when using image functions.

Defining Variables
There are a few ways that variables can be created:

 Global: This type of variable will be available for reading and
manipulation by ALL of your PureBasic programs.

 Local: Variables created this way will be available for reading and
manipulation only by a predefined portion of the program, and will
be alive only for the time needed to execute the code that portion
contains.

 Protected: This type of variable acts as the Local type, but with a
twist. It allows the programmer to name a variable within a portion
of code using the same name of another variable already declared
as Global, without causing conflicts.

 Argument: This is a variable type that is used with functions, which
we will discuss in a later chapter.

A very important issue when using variables is creating a name that is
meaningful. You’ll often see variable names such as “a” or “xs” or some
other seemingly random grouping of letters. To the developer of the
program, these may have a significant meaning; but to the world that’s
going to modify this code, it’s gibberish.

When you are creating a variable name, think about what the variable
does and then use something descriptive to define it. For example, let’s
say that you need to keep a list of the player’s current total score. Why
not name the variable TotalScore? It makes sense immediately what the
variable is for, and it’s not overly verbose.

33

Sometimes I will use a little descriptor at the beginning of most
variables so I can instantly see what kind of variable it is. I’ll use the
letter “l” for Long, “s” for String, “f” for Float, etc. So, instead of using
TotalScore, I would likely use lTotalScore. I now know, by just a glance
that this variable is a Long and it’s used to hold the total score of the
player. As you will see shortly, though, PB variables are defined with
the type of variable at the end of the variable name. So, you could also
just keep using that throughout your code to keep track of the type of
variable you’re working with.

One last thing on naming conventions: notice that I also capitalize the
first letter in each word. Again, this is just to make things more clear.
Typically you don’t need to do this, but it’s good practice. Think of a
variable that is to hold the passing scale of a student in a class. Without
capitalization, the variable would be passscale. You could easily miss an
“s” in that. With capitalization, it becomes clearer: PassScale.

Here are examples of good variable names:

 sPlayerName
 bCounterValue
 fShipAcceleration
 PlanetDescription
 BrakingSpeed
 ShieldPower
 WeaponType.b
 JumpSpeed.w
 ShipName.s

This is also known as UpperCamelCase because most of the variables
start with an uppercase letter and then each word has another
uppercase letter. The idea of "camel" here is that the letters represent
the bumps on the back of a camel. So, "PlanetDescription" has two
bumps.

With lowerCamelCase you would start the first word in the variable with
a lowercase letter. For example: planetDescription.

Why have upper and lower camel case options? That really depends on
you, the developer. You may want to have all of your standard variables
as lowerCamelCase and all of your globar variables as UpperCamelCase
so that you can differentiate them. Different development houses have
different naming conventions. The main point is to try to make a rule
and be consistent so that you can know at-a-glance what you're looking
at.

The first step in using a variable is to declare it. In PureBasic, this just
means that you put up the variable name and assign it a value.
Assignments are done using the “=” symbol. Here’s an example:

34

 TopSpeed.b = 5

That one line sets up a variable named TopSpeed, as a Byte and assigns
it the number 5. From here we could easily adjust that value by doing a
mathematical function on it. Let’s say that our ship’s top speed just
increased by 2 because we got a really cool new engine installed. We
could do the following:

 TopSpeed.b = TopSpeed.b + 2

That’s the equivalent of saying TopSpeed = 5 + 2, because remember
that our top speed value was originally assigned 5.

That describes how a Byte variable is setup, but what about the others?
The only difference is the variable name and the type of data assigned.
For example:

 TopSpeed.f = 5.5

Notice the “.f” after the variable name. This tells PB that you want this
value to be of type float. You only have to put the “.f” definition on the
variable name when you declare the variable. After this definition, PB
will remember its type.

 TopSpeed.f = 5.5
 TopSpeed.f = TopSpeed.f + 0.5

PureBasic will now alter TopSpeed to hold the value of 6.0.

 PlayerName.s = “Krylar”

The above example creates a variable of type String. The .s at the end
of the variable instructs PB that the data held will be character data,
non-numeric.

PureBasic also allows the string variables to be created using the $ sign,
as is common in BASIC-like languages. However, do note that the
following variable names will be considered different variables to PB:

PlayerName.s = “Krylar”
PlayerName$ = “Derlidio”

35

To PureBasic, PlayerName$ includes the “$” as part of the variable
name. This is why both of these definitions are valid, and will both
contain different information.

Commenting Your Code
Everyone has a style for commenting code, and you will likely build your
own method as well, but here are a few things to think about when
commenting:

 Make comments as clear and concise as possible. Brevity is
important, but only if the comment clearly conveys the purpose of
the code.

 Try to comment as you develop your code, not as an afterthought.
Commenting as you code ensures that you’ll have a fresh
perspective on what the code is doing. It can also help you pinpoint
bugs easier since you’ll need to clearly describe the code piece.

 As you update your code, also update your comments. Comments
are only as good as the code they describe. If the code evolves and
the comments don’t, then the comments quickly become irrelevant.

 If there are multiple people working on the code, make sure you put
an identifier in the comment to denote who changed the piece of
code and updated the comment.

 It is sometimes best to date subsequent changes on applications
released with source code. This is so other developers can know
what has changed and when.

You may decide to never share your source code with others, but this
doesn’t mean that you should avoid commenting. One day you will
likely end up revamping your own code and you’ll be just as lost as
anyone else looking at your non-commented code.

Even though PureBasic is a simple language, algorithms can still become
quickly cryptic. Worse even is that you often will find yourself hacking
your own code to make it do what you want. This is typical for most
programmers, but when you come back a year later to update this code
you’ll be completely confused at what you were thinking about if you
don’t clearly comment it.

To help you understand this, I’m going to take our OpenScreen version
of the “Hello, World!” program and comment it. Notice that the semi-
colon (;) is used at the beginning of each comment line. PureBasic will
consider anything after the semi-colon and up until the end of the line a
comment, instead of code. I put the asterisks (*) in simply to make the
sections more pronounced in the program definition.

Compare the first “Hello, World” program to the following one. Granted
that this is a very simple program that needs little explanation, but you
can immediately see what the purpose of the program is, when it was

36

updated, what was updated, and a piece by piece breakdown of what is
being done.

;***
 ; Title: Hello World!
 ; Files: helloworld.pb
 ; Author: Krylar
 ; Current Version: 1.0
 ; Last Updated: 01/01/01
;***
 ; Description:
 ; Simply puts up "Hello, World!" and delays 5 seconds
;***
 ; Update History:
 ; 12/01/00: Started project
 ; 01/01/01: Moved the text to the top of the screen
;***

 ; Initialize the sprite and a 640x480, 16-bit screen
 If InitSprite() = 0 Or OpenScreen(640,480,16,"Input Test") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
 EndIf

 ; make sure our output buffer is cleared to black
 ClearScreen(RGB(0,0,0))

 StartDrawing(ScreenOutput()) ; Tell PB to start drawing
 DrawText(280, 240, "Hello, World!") ; draw out our text
 StopDrawing() ; Tell PB we're done drawing

 ; Flip the buffers to show our changes to the user
 FlipBuffers()

 Delay(5000) ; delay the program for 5 seconds

 End ; Tell PB we're finished with the program

Some people prefer to put their comments directly after the commands,
as follows:

 Delay(5000) ; delay the program for 5 seconds

This method is fine, too. Actually, I will usually use both methods in my
code, as you can see from the above example and from many to come.
Note: I will not be including the top comment section in all of the
examples due to space limitations.

37

Regardless of the number of comments in your code, your final
application file size and speed will not be affected. This is because
PureBasic completely ignores all comments when it compiles your code.
Thus, to PB, it’s as if they’re not even in there. That said, however,
there is such a thing as commenting too much. You don’t need to be
overly verbose as long as you’re clear. If you find that you’re putting in
a paragraph to describe a single line, you probably need to rethink what
you’re trying to do. The above example is far too heavily commented for
what it does, for example. I only used it as an example so you could
see many facets of commenting.

Simple Arithmetic
Math is an essential element of most any game you’ll develop, so you’ll
need a way to perform calculations. Later we’ll get into the advanced
calculations that you can do to get various effects working, but for now
let’s just look at simple arithmetic.

Addition, subtraction, multiplication, and division are handled by the
symbols +, -, *, and /, respectively. For example:

Value.b = 1 + 2

Value would be equal to 3. That’s simple, no? If you replace that +
symbol with any of the other symbols (-, *, or /) you’ll get a different
result, but it’s still easy.

But look what happens when we have calculations like this:

Value.b = 1 + 2 * 10 / 5 – 3

You may think that PB will tackle the problem like this:

1+ 2 = 3
3 * 10 = 30
30 / 5 = 6
6 – 3 = 3

But it won’t. This is because PB will use precedence when calculating
this value. Precedence simply means the order in which an equation is
calculated. Like standard math, equations are calculated in PB by
handling first multiplication and division, then addition and subtraction.
Some of you math whizzes may know that exponents and parenthesis,
etc. will take precedence even over that… We’ll get there - don’t worry.

So, here’s how PB will handle the above calculation:

38

2 * 10 = 20
20 / 5 = 4
1 + 4 = 5
5 – 3 = 2

So what if you were trying to get “3” as the answer? You’d have to use
parenthesis to change the precedence of the calculation. Here’s what
the calculation would look like:

Value.b = (1+2) * 10 / 5 – 3

The insertion of the parenthesis will make it so the addition will occur
before the multiplication, thus resulting in “3” instead of “2.”

The order of precedence is as follows:

(), *, /, +, -

This is a very important concept to grasp because you can literally
change the outcome of an equation by a misplaced parenthesis or by
not including parenthesis where they are needed. So be cautious of
this.

Another area that we’ll touch on quickly is exponent math. An exponent
is a number that is multiplied by itself a set number of times. In
PureBasic you would use the Pow command to do exponent math.

 Value.f = Pow(2,4)

This command takes the first argument and increases it by the power of
the second argument. So the example call above would result in the
following:

2 * 2 * 2 * 2, which equals 16.

Cartesian Coordinates
While the object of this book is not to teach mathematical concepts, the
Cartesian Coordinate system is something you’ll need to understand to
grasp how PureBasic handles things. If you already know about this
system, feel free to skip ahead to the next section.

The Cartesian Coordinate system is just a way to show points on a two-
dimensional graph. Each point has a horizontal, often referred to as X,

39

and a vertical, often referred to as Y, value. These values describe the
location that a point will have on the graph. You may hear people using
terms such as “x, y coordinates” when regarding two-dimensional (2D)
games. They are simply referring to the pixel’s horizontal and vertical
position on the screen.

In figure 4.1, you can see what a Cartesian graph looks like. The dot at
(0,0) represents the position in the graph known as the origin. The
origin is the starting point of all other positions. Anything to the right of
the origin on the X-axis (horizontal) is a positive number. Likewise,
anything to the left of the origin on the X-axis is a negative number. On
the Y-axis (vertical), anything above the origin is positive and anything
below is negative.

Note that the dot in the upper-right has a position of 3,2. This means
that the X position is 3 spaces to the right of the origin, and that the Y
position is 2 spaces up from the origin. The lower-left dot (-6,-3)
demonstrates a negative position on the graph.

(Figure 4.1)

PB uses the Cartesian system for drawing pixels, text, and images to the
screen, but the placement of the origin does not allow for negative X
and Y positions. The origin used by PB is the upper left corner of the
monitor. Refer to figure 4.2 to see what PB does when handling
Cartesian coordinates.

40

(Figure 4.2)

As you can see there are no negative values to worry about when
drawing in PB. You would still have to worry about negative values
when comparing two locations, of course, but that’s easily accomplished
with simple subtraction.

41

Chapter 5: Program Control Statements

While it would be nice to simply have five lines of code to create a full
game that meets all your expectations, that’s not going to happen
anytime soon. The reality is you’ll probably be looking at thousands of
lines of code. This being the case, we’ll need a way to execute only the
pertinent lines at the appropriate times. To do this requires the use of
program control statements.

If…Else…EndIf
Even if you’ve never done any programming in your past, you’re already
familiar with the concepts of IF…ELSE. Why? Because you use this
process in the every day decisions that you make.

Take, for example, deciding what you’re going to have for dinner. IF I
cook dinner then I will need to prepare all the food and clean up
afterwards, ELSE I’ll have a messy kitchen. IF I go out to dinner then it
will cost me some hard-earned cash. Any time you make any decision in
real life, you unconsciously go through the IF…ELSE process. It happens
so fast (most of the time) that we’re just not always aware that it’s
happening. Any time you make decisions in your code, however, you will
have to consciously develop each IF…ELSE process to make sure your
code will be handling decisions in the way you expect it to.

The format looks like this:

 If Condition is True
 …process commands…
 Else
 …process commands…
 EndIf

Let’s write a little program that asks the user to enter some number. If
it turns out to be the number 1, say so. Otherwise, tell the user it’s not
the number 1.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16, 
 "Input Test")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0) ; assign our black color to a variable
ClearScreen(ClearColor) ; clear the output buffer to black

42

; Display text to the screen asking the user for input
StartDrawing(ScreenOutput())
 DrawText(0,0,"Enter a 1 or some other number:");
StopDrawing()

FlipBuffers() ; flip the buffers to show the user the request

; Initialize a string variable and set it to be blank
Answer.s = ""

; Now tell PB to wait until a key is pressed before going any further
While Answer.s = ""
 ; Call PB's ExamineKeyboard to see if there’s any keyboard activity
 ExamineKeyboard()
 ; If there is activity, assign key pressed to our Answer.s variable
 Answer.s = KeyboardInkey()
Wend

ClearScreen(ClearColor) ; clear the output buffer to black

; Start drawing to the output buffer
StartDrawing(ScreenOutput())
 ; check to see if the user input the number 1 or not
 If Answer.s = "1"
 ; if so, then write out text about that
 DrawText(0,0,"You entered a 1! Press any key to exit.")
 Else
 ; if not, then just tell them they didn't enter a 1
 DrawText(0,0,"You did NOT enter a 1! Press any key to exit.")
 EndIf
StopDrawing()

FlipBuffers() ; flip the buffer to show the user the result

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End ; end the program

Notice specifically how we can control what our program does by using
the IF…ELSE evaluations. This is very powerful since we are in a
constant state of evaluation during a game. Think of the following
evaluations:

 Is the player running or walking?
 Did the player fall?
 Is the player jumping?
 Is the player being stopped because of a wall?
 Is the player firing a weapon?

43

 Was the player hit by an enemy’s attack?
 Does the player have any “lives” remaining?
 Did the player make the high-score list?
 Did the player meet the objectives of this level?

This is a tiny list of the questions you’ll need to answer during the
course of your game. The larger the game, of course, the more
questions you’ll be asking.

It’s important to note that you don’t need to use an ELSE if it’s not
needed in your evaluation. For example, if you wanted to print “Shields
On!” if the variable ShieldsOn was equal to 1, you would do the
following (note that this little snippet of code will not run on its own):

 ; if ShieldsOn is equal to 1
 If ShieldsOn = 1
 ; Write “Shields On!” at the top of the screen
 DrawText(0,0,“Shields On!”)
 EndIf ; end of If ShieldsOn = 1

You don’t need the ELSE here because the text will only be displayed if
the variable is equal to 1. Now, if you wanted it displayed when the
shields are off, you would use an ELSE for that.

Also note that PureBasic does not allow the use of a THEN portion of the
IF… ELSE…ENDIF construct. Some BASIC languages offer, and some
require, the use of THEN, but PB does not.

At the end of every IF… ELSE…ENDIF construct, though, you must put
the ENDIF. This is the only way that PureBasic knows you’ve completed
this particular “decision block.” A decision block is a term used to
describe a set of instructions acted upon when a particular decision has
been made. If you removed the ENDIF from the above example, you
would get an error when you tried to run the program.

You may be wondering why I added a variable in this code called
ClearColor and I assigned the RGB value of 0,0,0 to it. As you progress
into games you will be using that ClearScreen almost every drawing
iteration. So if you call the RGB function every time, that slows things
down. Not substantially, but as programmers we always try to be
efficient where possible. Since I know that I'm going to always clear my
screen to RGB(0,0,0), I don't need to call that every time I call
ClearScreen. I just call it once at the top of my program and then use
the resultant value in my ClearScreen calls. If you think in terms of 30
frames per second, that means I'll be clearing my screen 30 times a
second. That translates to not calling RGB 30 times a second! Every
time you relieve your program from having to make unnecessary calls,
you can squeeze out just a little more processing power.

44

Nested IF Statements
Sometimes decisions will need to be made as part of other decisions.
This is sometimes called a “decision tree.” If you’ve ever done a
flowchart, you are already aware of what a decision tree looks like from
a flowcharting perspective.

At first this may look kind of confusing, but spend a few seconds
studying it and it should become clear. We’re simply asking a bunch of
questions, and based upon the response, another pertinent question is
answered.

But how would we represent that in our code? We’d have to use nested
IF… ELSE…ENDIF constructs. Here is the code:

 ; if the water is hot
 If WaterHot = 1
 ; see if the user got burned
 If WereYouBurned = 1
 DrawText(0,0,”Better get some ice!”)
 Else
 ; is the temp okay?
 If SoTempIsGood = 1
 DrawText(0,0,”Good enough!”)
 Else
 DrawText(0,0,”Yes, it’s perfect!”)
 EndIf ; end of If SoTempIsGood
 EndIf ; end of If WereYouBurned
 Else
 ; did the user freeze?
 If DidYouFreeze = 1
 DrawText(0,0,”Better get a blanket!”)
 Else
 ; is the temp okay?
 If SoTempIsGood = 1
 DrawText(0,0,”Good enough!”)
 Else
 DrawText(0,0,”Yes, it’s perfect!”)
 EndIf ; end of If SoTempIsGood
 EndIf ; end of If DidYouFreeze
EndIf ; end of If WaterHot

45

I know that’s a lot to digest your first time around, but study that
carefully and compare it to the decision tree above. If you take it line-
by-line you should be able to see how it works pretty easily.

We talked about the various evaluations a bit in the IF… ELSE…ENDIF
section, but how do those relate to nested IF’s? Here’s a breakdown of
some on that same list with additional questions, to give you a taste:

 Is the player running or walking?
 Does the player have on Rocket shoes?

 Which model?
 Is the player on a conveyor belt?

 Did the player fall?
 Was the player injured from the fall?

 Did the player land on something sharp?
 Is the player still healthy enough to continue?

 Will the player’s speed be affected?
 Will the player’s jumping ability be affected?

See how quickly you can get into many areas of evaluations? And also
how one evaluation can spring up many others? Hopefully now you
understand the need for decision trees and nested IF’s.

ElseIf Statement
One way to help avoid too much nesting is to use an ELSEIF. As
opposed to creating a completely new IF block, ELSEIF allows you to
keep within the main IF block while still giving the ability to check else
conditions.

Here is and example that uses the ELSEIF layout instead of a bunch of
embedded IF statements.

 If KeyValue = LeftArrow
 DrawText(0,0,“You hit the left arrow!”)
 ElseIf KeyValue = RightArrow
 DrawText(0,0,“You hit the right arrow!”)
 ElseIf KeyValue = UpArrow
 DrawText(0,0,“You hit the up arrow!”)
 ElseIf KeyValue = DownArrow
 DrawText(0,0,“You hit the down arrow!”)
 Else
 DrawText(0,0,“You did not hit an arrow key!”)
 Endif

And and Or Statements
There will certainly be occasions where you’ll want to compare two or
more values on the same IF line. Imagine you wanted to know if the

46

player has been hit while jumping. You could do a nested IF, of course,
but it’s not necessary. Instead you can ask PB if both cases are true on
one line.

 ; if the player has been hit and is jumping
 If PlayerHit = 1 And PlayerJumping = 1
 ; take away 2 points from the shields
 PlayerShields = PlayerShields – 2
 Else
 If PlayerHit = 1 And PlayerCrouched = 1
 ; otherwise, just take away 1 point
 PlayerShields = PlayerShields – 1
 EndIf
 EndIf

Let’s look at the functionality of each of these.

AND: This checks to see if two or more conditions have been met. The
main thing to note is that ALL of the conditions must be met when using
AND in order for PureBasic to return a positive result. Something to
think about when using the AND is to always use the most common
check first in the list. In our above example we first checked to see if
the player was hit before bothering to see if he was jumping. If the
player wasn’t hit we don’t want to waste time checking for the jump,
right? Since the AND requires all conditions to be true, if the player was
not hit, then the rest of the statement is ignored… which saves time.

OR: The OR statement allows you to check if one OR another statement
is true. What if you needed to check whether a player was hit by
shrapnel OR an explosion? You could use nested IF statements, of
course, or you could use OR.

 ; was the player hit?
 If PlayerHit = 1
 ; was it just by shrapnel or the effect the explosion?
 If ByShrapnel = 1 Or ByExplosion = 1
 ; just take 3 damage points off the player’s shields
 PlayerShields = PlayerShields – 3
 Else
 ; must have been a direct hit
 ; take the appropriate damage off
 PlayerShields = PlayerShields – ProjectileDamage
 EndIf ; end of If ByShrapnel …

 EndIf ; end of If PlayerHit

47

The SELECT Statement
What if you have a bunch of things to check, but you don’t want to have
a bunch of IF statements to check it with? You may allow the user to hit
different keys in your game, each having a different purpose. You have
left arrow, right arrow, up arrow, down arrow, spacebar, etc. Doing an
IF statement for each of these may start to make your code look a little
sloppy. So what do you do? Use the SELECT statement.

In a nutshell, SELECT allows you to check one variable for a lot of
different values. Here is an example:

 Select KeyValue
 Case LeftArrow
 DrawText(0,0,“You hit the left arrow!”)
 Case RightArrow
 DrawText(0,0,“You hit the right arrow!”)
 Case UpArrow
 DrawText(0,0,“You hit the up arrow!”)
 Case DownArrow
 DrawText(0,0,“You hit the down arrow!”)
 Default
 DrawText(0,0,“You did not hit an arrow key!”)
 EndSelect

Now, compare that with the IF method:

 If KeyValue = LeftArrow
 DrawText(0,0,“You hit the left arrow!”)
 Else
 If KeyValue = RightArrow
 DrawText(0,0,“You hit the right arrow!”)
 Else
 If KeyValue = UpArrow
 DrawText(0,0,“You hit the up arrow!”)
 Else
 If KeyValue = DownArrow
 DrawText(0,0,“You hit the down arrow!”)
 Else
 DrawText(0,0,“You did not hit an arrow key!”)
 EndIf
 Endif
 Endif
 Endif

Or, compare using the ELSEIF method:

 If KeyValue = LeftArrow
 DrawText(0,0,“You hit the left arrow!”)

48

 ElseIf KeyValue = RightArrow
 DrawText(0,0,“You hit the right arrow!”)
 ElseIf KeyValue = UpArrow
 DrawText(0,0,“You hit the up arrow!”)
 ElseIf KeyValue = DownArrow
 DrawText(0,0,“You hit the down arrow!”)
 Else
 DrawText(0,0,“You did not hit an arrow key!”)
 Endif

There’s not an amazing difference in size, but you should be able to see
where the SELECT command could come in handy where one variable
can have a multitude of values.

Aside from clarity in your coding, the SELECT command allow for better
optimization when a single value is to be tested several times.
Optimization is always a good thing!

Loop Basics
There is a lot of repetitive action in video games. The game “Asteroids”
is a prime example because it’s the same thing over and over. The only
real difference from level to level is that there are more rocks and more
UFO’s. Other than that, it’s essentially the same game throughout.

Due to this repetition in games, and programming in general, we need a
way to do things multiple times without having too much code.

Imagine that you wanted to draw 50 asteroids on the screen, and
imagine that drawing each asteroid would take one line of code. So, it’s
easy to deduce that you would have 50 lines of code. Now, take that a
step further and say that you also have 30 laser shots flying out of your
ship toward those asteroids. Now you’ve gone up to 80 lines of code.
Each time a new asteroid appears or a laser shot is fired, so increases
your lines of code. There has to be a more efficient way of handling
this, right? Right, it’s done by using loops.

A loop handles this because it is a means of telling PureBasic to do
something over and over until a certain condition is met, which is
precisely the kind of thing we’re looking for.

There are four types of loops available to us in PureBasic:

 For…Next
 ForEach…Next
 While…Wend
 Repeat…Until/Forever

Each of these loop types has its merits, so let’s run through them one-
by-one and discuss.

49

For…Next Loops
This type of loop can be considered as a “counter” loop. Meaning that it
is given an initial value to start at, and then counts up until it reaches
another value, and then it stops. As this loop continues counting, it will
process any instructions repeatedly until it meets its destined value.

Here is the layout of a FOR…NEXT loop:

 For Variable = InitialValue To EndingValue
 …process commands…
 Next

Using our asteroid scenario, let’s look at some pseudo-code to
demonstrate the use of FOR…NEXT. First we’ll look at the method of
drawing ten asteroids without looping.

 DisplaySprite(Asteroid_Image,0,0)
 DisplaySprite(Asteroid_Image,0,0)
 DisplaySprite(Asteroid_Image,0,0)
 DisplaySprite(Asteroid_Image,0,0)
 DisplaySprite(Asteroid_Image,0,0)
 DisplaySprite(Asteroid_Image,0,0)
 DisplaySprite(Asteroid_Image,0,0)
 DisplaySprite(Asteroid_Image,0,0)
 DisplaySprite(Asteroid_Image,0,0)
 DisplaySprite(Asteroid_Image,0,0)

Now let’s do the same thing using the FOR…NEXT loop:

 For Images = 0 To 9
 DisplaySprite(Asteroid_Image,0,0)
 Next

See how much smaller the latter is? You would really see a big
difference if you had to draw 50 or 100 asteroids, wouldn’t you?

If you’re really observant, you’ll notice that we didn’t start from 1 and
go to 10 in our FOR loop. We could have easily done this and it would
have worked fine, but you should start getting used to the fact that
computers count from 0, not 1. Remember, where you go 1…2…3…4…5,
a computer goes 0…1…2…3…4. You’ll often see code that has counter
offsets beginning at 0, so you should probably start getting used to that
now.

Now, let’s do something fun to really hone this in. Let’s create a little
program that lists the name “PureBasic” down the screen ten times. No,

50

this isn’t an amazing use of this powerful tool, but it helps get the idea
across.

Since we don’t want the text to overwrite the other pieces of text, we’ll
need to make sure that the Y-axis is spaced appropriately. The
standard font used in PureBasic requires us to put a distance of about
16 pixels between the lines to ensure we don’t overlap. To do this,
we’re going to keep a variable called TextY and we’ll add 16 to it each
time the loop iterates. This will tell PureBasic where we want each line
of text displayed.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Input Test")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

ClearScreen(ClearColor) ; clear the output buffer to black

TextY = 0 ; initialize our Y position to 0

; Display text to the screen asking the user for input
StartDrawing(ScreenOutput())

 ; Use a FOR...NEXT loop to put up our text 10 times
 For Rows.b = 0 To 9

 ; Write out the text
 DrawText(0,TextY,"PureBasic")

 ; update the next Y position to draw to
 TextY = TextY + 16
 Next

 ; put a little message on the screen for the user
 DrawText(0,400,"Press any key to exit.")
StopDrawing()

FlipBuffers() ; flip the buffers to show the user the request

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End ; end the program

51

You can set your initial and goal values to virtually anything. Your initial
value may be a negative or positive number, or zero. If you use an
initial value that’s greater than the ending value, however, you’re going
to run into a problem. Consider the following code:

 For Images = 10 To 9
 DrawSprite(Asteroid_Image,0,0)
 Next

Notice that our initial value is greater than our goal value. If you
guessed that PB would bypass this loop, you guessed correctly! But
what if you wanted to count from a higher number to a lesser number?
Maybe you need to count down from 5 to 1 because you’ve got a racing
game and you want to convey when the racers can start.

You would do this by using the STEP command. STEP informs PureBasic
how you want the loop variable to be adjusted before evaluation. The
following code demonstrates a countdown from 5 to 1, displaying the
counter value as it goes. Note the use of the STEP command in this
example:

 TextY = 0
 For Images = 5 To 1 Step -1
 DrawText(0,TextY,Str(Images))
 TextY = TextY + 10
 Next

That “Step –1” piece will inform PureBasic to subtract 1 from the
counter variable Images until it reaches the goal value of 1.

You can use any value to step with, also. Let’s say that you want to
count to 100 by 10’s.

 TextY = 0
 For Images = 0 To 100 Step 10
 DrawText(0,TextY,Str(Images))
 TextY = TextY + 10
 Next

Pretty simple, eh?

You can also use a constant as the STEP increment/decrement value.
To do this, you would set up a constant and assign it a value. Then
instead of putting a number after the STEP command, you would put the
constant name.

52

 #Value = 10
 TextY = 0

 For Images = 0 To 100 Step #Value
 DrawText(0,TextY,Str(Images))
 TextY = TextY + 10
 Next

Placing a “#” before the name makes the area of memory set aside a
constant. This means that you can’t change the value assigned to it
(well, you could, but it’d be rather tricky and a bit more involved than
we’re going to get).

You cannot use a variable in conjunction with the STEP command. Only
constant values will work.

While…Wend Loops
Where a FOR…NEXT loop processes based on a count from one value to
another, a WHILE…WEND loop can offer another option. This type of
loop can simply repeat a set of instructions WHILE a certain condition is
true. Yes, you can make this a count if you’d like, but it’s not a
requirement.

The functional layout of this loop is as follows (note that WEND simply
means “While End,” thus signifying the end of the loop):

 While Condition Is True
 … process commands…
 Wend

Here is a piece of code to demonstrate how you could use the WHILE…
WEND combination to provide the same functionality as a FOR…NEXT
loop.

 Images = 0
 TextY = 0

 While Images <= 9
 DrawText(0,TextY,Str(Images))
 Images = Images + 1
 TextY = TextY + 10
 Wend

So, what will this piece of code do? It will count from 0 to 9 and put
that number on the screen. I personally prefer the use of the FOR…
NEXT loop in these situations though, as it is tailored specifically for
counting between two values.

53

The most common use of the WHILE…WEND loop that I’ve seen in
games is as the main game control loop, which we’ll get into later. But
for now let’s look at a simple example that will blink “Hello, PureBasic!”
until the user presses a key.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Input Test")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; check the keyboard to see if any key has been hit
ExamineKeyboard()

; While the user has NOT hit a key
While KeyboardReleased(#PB_Key_All) = 0
 ClearScreen(ClearColor) ; clear the output buffer to black

 ; write out our text
 StartDrawing(ScreenOutput())
 DrawText(270,240,"Hello, PureBasic!")
 StopDrawing()

 FlipBuffers() ; flip the buffers to show the user

 Delay(100) ; wait for 100 milliseconds

 ClearScreen(clearColor) ; clear the output buffer to black

 FlipBuffers() ; flip the buffers to show the user

 Delay(100) ; wait for 100 milliseconds

 ; check the keyboard to see if any key has been hit
 ExamineKeyboard()
Wend

End ; end of program

See how the WHILE…WEND loop continues to roll, unaffected, until the
user presses a key? This is very important because it gives us a method
where we can more dynamically control a piece of code. There is still an
end-goal in mind with this type of loop, of course, but it has no pre-
determined end. It ends when the user wants it to end.

Again, the most common use I’ve seen of this loop type is the main
game loop. Programmers typically do all of their initializations (loading

54

graphics, sounds, etc.) and then drop into a While…Wend loop for the
rest of the game. Most games allow you to exit by pressing Escape or
some other quick key, which makes this loop type perfect for controlling
the action while waiting for the user to quit. Even games that have the
“Are you sure you want to quit?” box come up, likely use this loop
method. But instead of making the exit based on a key press, it’s based
on a value. Here’s an example:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Input Test")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; set the ExitCondition to 0
ExitCondition.b = 0

; While the ExitCondition is 0
While ExitCondition.b = 0
 ClearScreen(ClearColor) ; clear the output buffer to black

 ; write out our text
 StartDrawing(ScreenOutput())
 DrawText(270,240,"Hello, PureBasic!")
 StopDrawing()

 FlipBuffers() ; flip the buffers to show the user

 Delay(100) ; wait for 100 milliseconds

 ClearScreen(ClearColor) ; clear the output buffer to black

 FlipBuffers() ; flip the buffers to show the user

 Delay(100) ; wait for 100 milliseconds

 ; check the keyboard to see if any key has been hit
 ExamineKeyboard()

 If KeyboardInkey()
 ClearScreen(ClearColor) ; clear the output buffer to black

 ; put up the question to the user
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Do you really want to quit (Y/N)?")
 StopDrawing()

 FlipBuffers() ; show the question to the user

55

 ; set the Answers.s variable to be a blank
 Answer.s = ""

 ; Wait for a keypress before going any further
 While Answer.s = ""
 ExamineKeyboard()
 Answer.s = KeyboardInkey()
 Wend

 ; if the answer is "Y" (or "y"), then set the ExitCondition to 1
 If Answer.s = "Y" Or Answer.s = "y"
 ExitCondition.b = 1
 EndIf
 EndIf

Wend ; end of While loop

End ; end of program

Please note that the KeyboardInkey command will not process certain
keys, such as Alt, Ctrl, Shift, etc. For these you’ll need the
KeyboardPushed command, which we will be working with later.

Repeat…Until/Forever
Good news on this one, it’s almost identical to WHILE…WEND. The only
differences are the syntax used and the fact that the loop is guaranteed
to process at least once. To quickly help you understand, I will take the
last program we used and convert it to the REPEAT…UNTIL format.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Input Test")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; set the ExitCondition to 0
ExitCondition.b = 0

; Repeat until the ExitCondition is 1
Repeat
 ClearScreen(ClearColor) ; clear the output buffer to black

 ; write out our text
 StartDrawing(ScreenOutput())
 DrawText(270,240,"Hello, PureBasic!")

56

 StopDrawing()

 FlipBuffers() ; flip the buffers to show the user

 Delay(100) ; wait for 100 milliseconds

 ClearScreen(ClearColor) ; clear the output buffer to black

 FlipBuffers() ; flip the buffers to show the user

 Delay(100) ; wait for 100 milliseconds

 ; check the keyboard to see if any key has been hit
 ExamineKeyboard()
 If KeyboardInkey()
 ClearScreen(ClearColor) ; clear the output buffer to black

 ; put up the question to the user
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Do you really want to quit (Y/N)?")
 StopDrawing()

 FlipBuffers() ; show the question to the user

 ; set the Answers.s variable to be a blank
 Answer.s = ""

 ; Wait for a keypress before going any further
 While Answer.s = ""
 ExamineKeyboard()
 Answer.s = KeyboardInkey()
 Wend

 ; if the answer is "Y" (or "y"), then set the ExitCondition to 1
 If Answer.s = "Y" Or Answer.s = "y"
 ExitCondition.b = 1
 EndIf
 EndIf

Until ExitCondition.b = 1 ; End of Repeat loop

End ; end of program

Notice that only two code lines changed. “While” was replaced with
“Repeat” and “Wend” was replaced with “Until” plus the condition we’re
checking for.

You can see how the commands in a WHILE…WEND could be bypassed
completely if the statement evaluated by WHILE is false. In REPEAT…
UNTIL, however, the statement is not evaluated until the end of the
loop, so all of the commands will be processed once before the

57

evaluation. The point is that any time you need a set of commands to
be processed no less than one time, use the REPEAT…UNTIL loop format
over WHILE…WEND.

If you decided to use the REPEAT…FOREVER combination, however, the
loop would never stop. This means that you would not need to have an
end condition to check for, but you will need to have a way to get out of
the loop or the computer will be locked. Getting out of the loop requires
the use of the BREAK command. BREAK breaks out of a loop and places
the execution at the point directly after the loop. You can also put an
argument after BREAK to inform it how many loops (assuming there are
nested loops) you wish it to break from.

58

Chapter 6: Understanding/Using Arrays

When we were talking about the different variable types in chapter 4,
we got into a bit of detail with the String type. This is the variable that
“strings” characters together to form a word. ARRAYS can be
envisioned similarly. As a matter of fact, as you’ll soon see, a string is
an ARRAY!

What Arrays Look Like
In order to define what an array actually looks like, we need to take an
example. Let’s pretend that we had the names of five players, and we
wanted to store them all in memory. We could either set up five
individual variables named “Name1.s,” “Name2.s,” etc., or we could use
an array.

So, we could use the individual strings and have:

Name1.s =”John”
Name2.s =”Lorelei”
Name3.s =”Fred”
Name4.s =”Betty”
Name5.s =”George”

This format would setup the individual strings and we would have to
recall the variable name in full when referencing a particular player. If,
however, we used an array we would only need to know the array name
and the location of the player within the array. Here is an example of
what that would look like:

NameArray.s(0) = “John”
NameArray.s(1) = “Lorelei”
NameArray.s(2) = “Fred”
NameArray.s(3) = “Betty”
NameArray.s(4) = “George”

But that’s not much different than the string method, is it? Remember
what a string looked like in memory? Here’s a refresher:

That’s exactly what an array looks like too, except that it takes the full
piece of data and places it side-by-side, as follows:

59

So, really, the data inside of the above example is broken down further
into arrays. Thus, as strings are “characters strung together,” arrays
are “data strung together.”

Okay, but what’s the real benefit? As we move on through the various
topics, you’ll begin seeing a ton of uses for arrays, but to give an
example: Imagine that you have a list of high scores in a file. You have
100 different scores in there and you want to load it up and display it to
the user. Well, you can either go line-by-line creating 100 variables, or
you can create a single array that has the potential of holding 100
scores. Also, you can easily read each line from the file using a FOR…
NEXT loop that keeps track of where you are in your array during
assigning and reading of values.

Initializing an Array (the DIM command)
The first thing you need to do when using an array is let PureBasic know
what type of array you want and how much data it’s to contain. The
second thing to note is that all arrays are automatically defined as
GLOBAL. This means that arrays, regardless of where they are defined
in your program, may be manipulated and read by all of your PB code.

To initialize an array, we use the DIM command. DIM is short for
“dimension,” and it refers to the size of the array. Think of it as you
would the dimensions of a room. It’s just a size indicator.

Keeping with our five-name example, here’s how we could define our
array:

Dim NameArray.s(4)

That’s it. In that one statement, we’ve told PB to reserve enough
memory to hold five pieces of data of type string. From here PB will
carve out a memory chunk for us and get it ready to hold any string
data we want to store in there. Why five elements when we have the
number 4 in there? Because PureBasic starts counting from 0,
remember. So if you count 0…1…2…3…4 what you will actually have is 5
elements. An easy way to remember this is knowing that whatever
number you place in the array definition, PB will reserve that number +
1. Thus, in our example, it would be 4+1, or 5, elements.

As you’ve already seen, it’s easy to add names to our array. We just
note the location in the array and assign the value.

60

NameArray.s(0) = “John”
NameArray.s(1) = “Lorelei”
NameArray.s(2) = “Fred”
NameArray.s(3) = “Betty”
NameArray.s(4) = “George”

To print these out we would probably want to use a FOR…NEXT loop
because we know the beginning value to start at and we know the
ending value as well. It’s a defined size, and FOR…NEXT loops are
perfect for that scenario.

Here is an example that will print all of the contents of our array out on
separate lines. Note the use of the vertical control variable again. This
is to ensure that the lines don’t overwrite each other.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Array Test")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; Dimension our NameArray
Dim NameArray.s(4)

; Assign our values to the array
NameArray.s(0) = "John"
NameArray.s(1) = "Lorelei"
NameArray.s(2) = "Fred"
NameArray.s(3) = "Betty"
NameArray.s(4) = "George"

TextY = 0 ; initialize the starting Y position
StartDrawing(ScreenOutput())
 ; Loop through the array and print out the values
 For Names = 0 To 4
 DrawText(0,TextY,NameArray(Names))
 TextY = TextY + 16
 Next

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to exit")
StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()

61

Until KeyboardReleased(#PB_Key_All)

End ; end the program

Arrays are not limited to string values, of course. You can also set them
up as Byte, Word, Long, Float, or as a structure. We have not touched
on structures yet, but will get into much detail on them soon.

You treat Byte, Word, Long, and Float types exactly as you do String,
with the only exception being the definition.

 Dim NameArray.s(4) ; creates an array of strings
 Dim WeaponArray.b(4) ; creates an array of integers
 Dim MissionArray.w(4) ; creates an array of integers
 Dim ScoreArray.l(4) ; creates an array of integers
 Dim PrecisionArray.f(4) ; creates an array of floats

Note that you don’t have to use the word “array” in the array definition.
This is a practice that I sometimes use to keep straight what’s what in
my coding, but somewhat rarely. The following would work just as
effectively:

 Dim Name.s(4) ; creates an array of strings
 Dim Weapon.b(4) ; creates an array of integers
 Dim Mission.w(4) ; creates an array of integers
 Dim Score.l(4) ; creates an array of integers
 Dim Precision.f(4) ; creates an array of floats

Multidimensional Arrays
I know that “multidimensional array” sounds like something out of a
science fiction novel, but it’s really just an array that has more than one
dimension. Think of it this way, if someone asked you only for the
length of a rectangle, they are asking for a single dimension. If they
ask for the length and the width, however, then they are asking for
multiple dimensions.

Likewise, arrays can be linear or multidimensional. We’ve already
described a linear array, where everything moves along as item1-
>item2->item3 and so on. But in a multidimensional array we would
see something that conceptually looks like this:

John -> Joe -> Fred -> Bert
Sally-> Betty -> Lorelei -> Anne
(Figure 6.1)

62

Here you have seemingly two lists. The first is a list of male names, and
the second is a list of female names. Now we could have two separate
arrays for this, but there’s no need to. We can simply make an array
with two dimensions. The first dimension is all the male names, and the
second is all the female names.

You can also imagine this as rows and columns if that makes it easier.
In our example, we have two rows of names and each consists of four
columns. Thus, as you would say a room is 9x12 when asked for
dimensions, you could say our array is 2x4.

From a non-conceptual point of view, however, this is not how PureBasic
sees the array in memory. PB sees a multidimensional array as just a
larger single-dimensioned array. The multidimensional components are
for the programmer, not the language. The reason for this is because
it’s easier for the programmer to keep track of row/column than it is to
keep track of a bunch of columns that have a bunch of set-based data.

To the programmer it looks like this:

To PB, it looks like this:

PureBasic handles the details for you (as do many languages that offer
multidimensional array support), so you can have an easier method of
wrapping your mind around your data. As your data needs grow with
your game development concepts, so too will the complexity of how you
piece that data together. Fortunately PureBasic is already prepared to
help you handle most of these difficulties.

So, how do we declare this type of array? As follows:

Dim NameArray.s(1,3)

To add to that array, we tell PB the row and column to place an entry
into.

63

NameArray.s(0,0) = "John"
NameArray.s(1,0) = "Sally"

This means that “John” will now sit in row 0, column 0, and that “Sally”
will be in row 1, column 0. Remember that PB counts from 0, not 1.

Accessing the array is a bit trickier because we’ll need to use a nested
FOR…NEXT loop. We need to do this because we must first grab all the
items from row 0 and then move on to row 1. Here is a program that
demonstrates the entire concept. Pay close attention to the FOR…NEXT
loops so you can see how we handle the rows and columns individually.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Array Test")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; Dimension our NameArray
Dim NameArray.s(1,3)

; Assign our values to the array
NameArray(0,0) = "John"
NameArray(0,1) = "Joe"
NameArray(0,2) = "Fred"
NameArray(0,3) = "George"
NameArray(1,0) = "Sally"
NameArray(1,1) = "Betty"
NameArray(1,2) = "Lorelei"
NameArray(1,3) = "Anne"

TextY = 0 ; initialize the starting Y position
StartDrawing(ScreenOutput())
 ; Loop through the array and print out the values
 For NamesRow = 0 To 1
 For NamesColumn = 0 To 3
 DrawText(0,TextY,NameArray(NamesRow,NamesColumn))
 TextY = TextY + 16
 Next
 Next

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to exit")
StopDrawing()

FlipBuffers() ; show the output to the user

64

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End ; end the program

If you type in that program and run it, you’ll see all the names listed
starting with the first row. Try altering the NameRow loop to print out
the female names first (hint: you’ll need to use that STEP command!).

You’re not limited to two dimensions on your arrays either. If you want
to move on to three dimensions, you can do so by declaring your array
as follows:

Dim NameArray.s(4,1,2)

The statement creates an array that is 5 elements deep, 2 high, and 3
wide. This is just one way to look at it. You may decide to conceptualize
it as a 3D array, being X,Y, and Z as the three values. There are many
ways to visualize this concept.

Since you already know how to access single-dimensioned arrays and
two-dimensioned arrays, you should be able to use that knowledge to
figure out how to access the three-dimensional arrays. Take the above
code for 2D arrays and play around with it until you get the 3D arrays
working properly. It’s not that difficult and it’s a good way for you to
get used to the dynamic coding issues that arise in game creation.

Re-dimensioning Arrays
You may find it necessary to change the dimension of your array while
the program is running. In other words, you don’t want the program to
stop so you can manually change the dimension of the array, you want
the program to change the dimension of the array on its own.

Let’s assume you knew you would have five names for ships and three
names for animals, and you didn’t want to have two arrays to cover the
gamut, you would simply do the following:

Dim NameArray.s(4)
…load in ship name data and print…
Dim NameArray.s(2)
…load in animal name data and print…
Dim NameArray.s(4)
…load in ship name data and print…
Dim NameArray.s(2)

65

…load in animal name data and print…

Yes, I showed those twice to demonstrate that you can go back and
forth all you want and PureBasic will keep track of array information.

You can also use variables to dynamically control the size of the re-
dimensioning, as follows:

SizeOfArray = 4
Dim NameArray.s(SizeOfArray)
…load in ship name data and print…

SizeOfArray = SizeOfArray - 2

Dim NameArray.s(SizeOfArray)
…load in animal name data and print…

Loading Data Values into an Array
There is a neat little ability in PureBasic that allows you to put all of your
data in one location, in a readable format, that you can then “load”
from. It’s done by using PB’s DATA statement and its support
constructs.

While you can certainly use a disk file to hold all of your data, you may
not wish to for various reasons. Maybe you don’t want someone
tampering with key values that your game needs to run correctly, for
example. Depending on the game, I will generally use disk files for
most of my processing, but I will rely on DATA statements to help keep
some of the more secretive stuff secure. It’s not a guarantee of
security, mind you, but it’s more secure than an opened disk file. And
even if both the data values and the file are encrypted, it’s still a safer
method.

So why use disk files at all? I find disk files easier to deal with and less
messy. Small pieces of data in DATA statements are fine, but larger
pieces can quickly become confusing because there’s so much going on.
So if you keep the data to a minimum, it’s a great resource.

There are a few commands you’ll need to be aware of when using this
tool:

 Data: This is the command that tells PB everything on the line is to
be taken as information for later processing.

 Restore: Tells PB where in the program it should start reading data
values. It’s based on a label that you create.

 Read: This command tells PB to read an individual element from the
list of data entries.

66

The following piece of code shows you how to create and populate a
data area:

DataSection
 NameData:
 Data.s "John","Joe","Mark","George"
 Data.s "Sally","Betty","Lorelei","Anne"
 Data.s "Fido","Spot","Killer","Tank"
 Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"
EndDataSection

The first thing to note is:

DataSection

This line informs PureBasic that what follows will be data used for your
program.

NameData:

This is the label of the section I’m using for the data being stored. You
don’t have to call it NameData. You can call it pretty much whatever
you want, just remember to be mildly descriptive so it’s not ambiguous.

This label will be used with the Restore command. Make sure you put a
colon (“:”) at the end of the name. If you don’t have the colon in there,
PureBasic will not know what the intention of the line is and your
Restore command will not be able to locate the label, and you’ll get an
error during compile.

Then we have our group of DATA statements:

 Data.s "John","Joe","Mark","George"
 Data.s "Sally","Betty","Lorelei","Anne"
 Data.s "Fido","Spot","Killer","Tank"
 Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"

You can imagine this as you would an array. There are four rows of
data, each consisting of four columns. So, in essence, we’ve just drawn
a two-dimensional array of names. This is good because we want to
read these values into an array anyway, so their formatting makes it
easy for us to wrap our minds around.

EndDataSection

67

And finally, in order to let PB know when you’re finished you use the
EndDataSection keyword.

In order to read these values into our array, we’ll need to first Restore
them and then use the Read command in conjunction with an array.
The following code with read the DATA elements into the array:

; Dimension our NameArray
Dim NameArray.s(3,3)

; Go to the front of the data lines for the NameData
Restore NameData

; loop through the data and READ to the array
For NameType = 0 To 3
 For Names = 0 To 3
 Read.s NameArray.s(NameType ,Names)
 Next
Next

First off, we created an array of 4x4 because we have four rows by four
columns. Secondly, we use Restore to go to the front of the NameData
data set. You should note that there is no colon (“:”) at the front of the
label in a Restore call.

Our next step is to loop through all the rows and columns, using Read
as we go to fill in our array. Each call to Read will grab one element
from the DATA values. The Read command doesn’t care if you put all of
the elements in your DATA values on one line or on multiple lines. Note
that the Read command now requires that you pass the data type you
are looking to read. To use the Read command, use the following
layout:

DataSection
 NameData:
 Data.s "John","Joe","Mark","George","Sally","Betty","Lorelei", "Anne"
EndDataSection

…which is the same thing as this:

DataSection
 NameData:
 Data.s "John","Joe","Mark","George"
 Data.s "Sally","Betty","Lorelei", "Anne"
EndDataSection

68

The formatting is for the programmer’s benefit, not PB’s. As you can
see, though, it’s much easier to understand the second list than the first
because of the grouping component.

The following piece of code is an altered version of our array printout
code. It uses DATA statements to provide the array with the proper
values.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Array Test")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; Dimension our NameArray
Dim NameArray.s(3,3)

; Go to the front of the data lines for the NameData
Restore NameData

; loop through the data and READ to the array
For NameType = 0 To 3
 For Names = 0 To 3
 Read.s NameArray(NameType,Names)
 Next
Next

; Set up the vertical control variable
 TextY = 0

 StartDrawing(ScreenOutput())
 ; Loop through the array we READ and print it out
 For NameType = 0 To 3
 For Names = 0 To 3
 DrawText(0,TextY,NameArray(NameType,Names))
 TextY = TextY + 16
 Next
 Next

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to exit")
 StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

69

End ; end the program

; Here is our data area
DataSection
 NameData:
 Data.s "John","Joe","Mark","George"
 Data.s "Sally","Betty","Lorelei","Anne"
 Data.s "Fido","Spot","Killer","Tank"
 Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"
EndDataSection

So what if you had different types of data that you wanted to read into
two different arrays? You would use different labels. Study the
following piece of code and note the use of multiple labels.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Array Test")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; Dimension our Arrays
Dim NameArray.s(1,3)
Dim ShipNameArray.s(3)

; Go to the front of the data lines for the NameData
Restore NameData

; loop through the data and READ to the array
For NameType = 0 To 1
 For Names = 0 To 3
 Read.s NameArray(NameType,Names)
 Next
Next

; Go to the front of the data lines for the ShipNameData
Restore ShipNameData

; loop through the data and READ to the array
For Names = 0 To 3
 Read.s ShipNameArray(Names)
Next

; Set up the vertical control variable
 TextY = 0

 StartDrawing(ScreenOutput())
 ; Put up a header for the list

70

 DrawText(0,TextY,"Names:")
 TextY = TextY + 16

 ; Loop through the Name array we READ and print it out
 For NameType = 0 To 1
 For Names = 0 To 3
 DrawText(0,TextY,NameArray(NameType,Names))
 TextY = TextY + 16
 Next
 Next

 ; put one additional space in between lists
 TextY = TextY + 16

 ; put up a header for the 2nd list
 DrawText(0,TextY,"Ship Names:")
 TextY = TextY + 16

 ; Loop through the Ship Name array we READ and print it out
 For Names = 0 To 3
 DrawText(0,TextY,ShipNameArray(Names))
 TextY = TextY + 16
 Next

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to exit")
 StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End ; end the program

; Here is our data area
DataSection
 NameData:
 Data.s "John","Joe","Mark","George"
 Data.s "Sally","Betty","Lorelei","Anne"

 ShipNameData:
 Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"
EndDataSection

When studying that piece of code, pay special attention to the fact that
NameArray is a two-dimensional array and ShipNameArray is singly
dimensioned. The purpose of this was to demonstrate the use of the
various dimensions when reading in values via DATA commands.

71

Variable Length Data Statements
In the next chapter we will read in data sets that have varied sizes, and
ones that can be changed on the fly without having to hunt through our
code making all the related changes. This means that we won’t waste
time remembering all of the places our arrays can be affected.

For now, however, let’s just print out a list of values in a data
statement, change it and using the same code base, print them again.
The focus here is to change nothing other than the actual data
statements.

The first step is to decide on a value that we can use as our closing
value. Sticking with our name convention, let’s say the final value is
simply “STOP.” So, when we create our data set, we’ll just need to put
one line that has the word “STOP” in it, as follows:

NameData:
 Data.s "John","Joe","Mark","George"
 Data.s "Sally","Betty","Lorelei","Anne"
 Data.s "Fido","Spot","Killer","Tank"
 Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"
 Data.s “STOP”

Now, all we need to do is check each value against the word “STOP.” If
the value is found, then we’re all finished! To handle this process, we’ll
want to call on the WHILE…WEND and IF… ELSE…ENDIF commands.
Here’s the example code:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"Array Test")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; Set up the vertical control variable
TextY = 0

; set up our flag value for seeing if we're done or not
FinishedListing = 0

Restore NameData

StartDrawing(ScreenOutput())
 ; while we're NOT Finished
 While FinishedListing = 0
 ; read a Name from the data segment

72

 Read.s Name.s
 ; if that Name = STOP, then we're done
 If Name = "STOP"
 FinishedListing = 1
 Else
 ; otherwise, show the Name we read
 DrawText(0,TextY,Name)
 TextY = TextY + 16
 EndIf
 Wend

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to exit")
StopDrawing()

FlipBuffers() ;show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End ; end the program

; Here is our data area
DataSection
 NameData:
 Data.s "John","Joe","Mark","George"
 Data.s "Sally","Betty","Lorelei","Anne"
 Data.s "Fido","Spot","Killer","Tank"
 Data.s "Millennium Hawk","Tea Fighter","Zap-Wing","Dead Star"
 Data.s "STOP"
EndDataSection

Play around with this a bit by adding data values. You can put them
anywhere you want as long as you end with a “STOP.” What happens if
you don’t have “STOP” as your last item? PB will toss up an error saying
that it’s run out of data to process. This isn’t a big deal in your testing,
but it will be to the people playing your game, so be careful. Also, you
don’t need to use the word “STOP.” I chose that word because it
seemed applicable. You could use “–1” or “Blibbledeeebloob” if you
wanted to, PureBasic doesn’t care.

Hopefully this is all starting to come together for you. In the next
chapter we’ll be learning about another powerful data construct called a
structure, and we’ll touch again on how to load variable length values
using the DATA commands.

73

Chapter 7: Understanding/Using Structures

We’ll often work with various data sets containing a bunch of related
items, but are all different types. Taking our previous example of
getting an individual’s personal information, let’s say we wanted to know
the name, age and grade point average (GPA) of a person. The name is
a String, the age is a Byte, and the GPA is a Float.

While we could use an array for that, the data can become more
confusing as the list of info we want on each person grows. Using a
Structure, however, gives us a more dynamic tool for building data sets
with varied information. This is key because game data has to be
dynamic! Another key point is that arrays take chunks of memory
whether they use them or not. Structures only use what’s needed and
nothing more.

So what does a Structure look like? Here’s a little snippet of code that
defines our personal information values:

 Structure PersonalInfo
 Name.s ; name of the person
 Age.b ; age of the person
 GPAPercent.f ; Grade Point Average of the person
 EndStructure

The first line defines the name of the Structure, which in this case is
PersonalInfo. Then we have a group of fields that build the actual
variables in the Structure. Finally, we have to let PureBasic know that
we are done configuring the Structure, so we place the command
EndStructure.

Note that we don’t assign any values during the building of our
Structure. This is because our format is merely a blueprint for the data
that can be held by PersonalInfo. To actually store data, we must first
initialize the Structure as a Variable, an Array, or a List.

Arrays of Structures
Since we just finished discussing Arrays, let’s start with that method.

Dim People.PersonalInfo(99)

The above line will create an Array of 100 elements (remember, we
count from 0, not 1!) for our Structure. This is exactly like creating any
other Array, with the exception that we’re using the already defined
structure name as part of the declaration.

74

Obviously we won’t be able to use the same type of notation for
assigning values that we use with a Byte Array, so how do we do it?
Consider the following:

People(0)\Name = “John”
People(0)\Age = 36
People(0)\GPAPercent = 3.75
People(1)\Name = “Lorelei”
People(1)\Age = 36
People(1)\GPAPercent = 4

As you can see, with the addition of the “\” and the name of the variable
within the structure, we can assign the varied values with ease!
Retrieving the values is just as simple:

StudentName = People(0)\Name
StudentAge = People(0)\Age
StudentGPA = People(0)\GPAPercent

See how easy that is?

One thing you may have noticed is that I’m not bothering to put the
variable type at the end of each data field. This is because PB already
knows what type field is since it's in the blueprint. The following used
to be an error:

People(0)\Name.s = “John”

But it appears in version 4.61 that PB will accept the field with or
without the variable type and not complain either way.

Now let’s take a look at how powerful it can be in a game situation.

The following code will create a Structure that houses information about
different space ships. We’ll be using Data statements in this example,
which we learned about in the last chapter, and we’ll be creating two
ship types with some differing information.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
 #PB_MessageRequester_OK)
 End
EndIf

; setup our structure

75

Structure Ships
 Name.s ; name of this ship
 LaserPower.b ; 1-20 points per hit
 Armor.b ; 75-125 points depending on the ship
 ShieldPower.b ; 50-100 points added on to Armor
 TopSpeed.b ; 2 - 4 depending on ship type
EndStructure

; dimension our Fighters
Dim Fighter.Ships(1)

; go to the ShipNameData section
Restore ShipNameData

; use a standard array looping style
For i = 0 To 1
 ; read the data
 Read.s Fighter.Ships(i)\Name
 Next

; go to the ShipSpecsData section
Restore ShipSpecsData

; use a standard array looping style
For i = 0 To 1
 ; read the data
 Read.b Fighter.Ships(i)\LaserPower
 Read.b Fighter.Ships(i)\Armor
 Read.b Fighter.Ships(i)\ShieldPower
 Read.b Fighter.Ships(i)\TopSpeed
Next

; Set up the vertical control variable
TextY = 0

StartDrawing(ScreenOutput())
 ; Step through the Ships array and print
 For i = 0 To 1
 shipText.s = "Ship Name: " + Fighter.Ships(i)\Name
 DrawText(0,TextY,shipText.s)
 TextY = TextY + 16

 shipText.s = "Laser Power: " + Str(Fighter.Ships(i)\LaserPower)
 DrawText(0,TextY,shipText.s)
 TextY = TextY + 16

 shipText.s = "Armor: " + Str(Fighter.Ships(i)\Armor)
 DrawText(0,TextY,shipText.s)
 TextY = TextY + 16

 shipText.s = "Shield Power: " + Str(Fighter.Ships(i)\ShieldPower)

76

 DrawText(0,TextY,shipText.s)
 TextY = TextY + 16

 shipText.s = "Top Speed: " + Str(Fighter.Ships(i)\TopSpeed)
 DrawText(0,TextY,shipText.s)
 TextY = TextY + 32
 Next

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to exit")

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End ; end the program

; Here is our data area
DataSection
 ShipNameData:
 Data.s "Kliazian Raptor", "Weltic Cruiser"

 ShipSpecsData:
 Data.b 15,125,50,3
 Data.b 20,100,75,4
EndDataSection

Most of this should already be familiar with you, so I won’t step through
it all. But the pieces that are a bit new are the Structure creation and
how I’m calling the Read.

; setup our structure
Structure Ships
 Name.s ; name of this ship
 LaserPower.b ; 1-20 points per hit
 Armor.b ; 75-125 points depending on the ship
 ShieldPower.b ; 50-100 points added on to Armor
 TopSpeed.b ; 2 - 4 depending on ship type
EndStructure

A quick glance at the above shows that we’re setting up pretty basic
information on a ship. If we were to really build this ship out we’d need
to think about additional things, such as: cargo space, number of

77

missiles, weapons allowed, weapons available, turning speed, braking
speed, landing bays (for smaller ships to be housed), and so on. This
list can actually get rather large and have many different item types,
which is why the use of a Structure is ideal!

; use a standard array looping style
For i = 0 To 1
 ; read the data
 Read Fighter.Ships(i)\LaserPower
 Read Fighter.Ships(i)\Armor
 Read Fighter.Ships(i)\ShieldPower
 Read Fighter.Ships(i)\TopSpeed
 Next

We’re doing the exact same thing with the Read here that we did in the
last chapter, except that here we store the values directly into the
Structure. It’s quite easy, isn’t it?

Arrays within Structures
One of the things you’ll likely want to do is have the ability to
incorporate an Array inside of a Structure. There are many reasons for
this, but for a quick example let’s just say that we want to keep track of
the number of missiles our ship currently has, and also what their
classification is. Certainly we could do this with just adding two
additional fields, but play along with me so you can learn this method.

Taking the last example, let’s edit the Structure a bit:

; setup our structure
Structure Ships
 Name.s ; name of this ship
 LaserPower.b ; 1-20 points per hit
 Armor.b ; 75-125 points depending on the ship
 ShieldPower.b ; 50-100 points added on to Armor
 TopSpeed.b ; 2 - 4 depending on ship type
 Missiles.b[2] ; Missile array of 2 elements
EndStructure

Notice that the only difference from our original example is the
Missiles.b[2] line. This line tells PureBasic that we want to create an
Array within the Structure that can hold 2 elements.

Now you may be thinking that the Array will hold 3 elements, as
described in the last chapter, but Arrays inside of a Structure do not
behave exactly the same as those defined outside of one. This is due to
this type of an Array being a Static array (denoted by the [] and the
lack of a DIM statement). In Structures a static Array doesn't behave
like the normal BASIC array (defined using Dim). This has to do with the

78

handling of advanced API (Applications Programmer Interface) porting
to the C/C++ language. Huh? I know that sounds really advanced.
Basically note that PureBasic is a very powerful language that allows you
to interface with other languages and, because of this, therefore PB has
to make sure it stays compatible with the needs of those other
languages and their formatting.

What this really means to us thought is that a Structure (static) Array of
[2] will allocate an Array from 0 to 1, where a DIM (non-static) Array of
(2) will allocate an array from 0 to 2.

To read in the elements from our DATA statement is a snap. Just do the
following:

; go to the ShipNameData section
Restore ShipNameData

Read Fighter.Ships(0)\Missiles[0]
Read Fighter.Ships(0)\Missiles[1]

Read Fighter.Ships(1)\Missiles[0]
Read Fighter.Ships(1)\Missiles[1]

Check out the example code in the Chapter 7 directory under the file
name “ex7-2ArrayOfStructuresArray.pb” to see this in action.

Basic Structure Lists
For a more dynamic approach to using a Structure, we will turn to the
concept of Lists. A List is similar to an Array in that each element is in a
procession of elements in memory. The primary difference is that a List
is dynamic. You can add and delete elements in a List on the fly, which
means that you can control precisely how many elements are allocated.

One way to visualize this is email. When you receive a piece of email,
the item is placed in a list of emails among all the other emails you’ve
received. Pretend you have 10 emails in your queue. You read item
number 5 and then delete it. The list just changed dynamically. You
still have the remaining 9 emails in your mailbox, and if another one
arrives, you’ll have 10 again. This is similar to how a List works in PB.

For an example of this let’s pretend that you are launching missiles from
your ship. You are allowed to launch a maximum of 10 missiles at a
time. Each missile can have a speed anywhere from 20-100 units per
second, and can travel anywhere between 500-2500 units before it
fizzles out.

The first step will be to create a Structure for our missiles.

79

Structure Missiles
 Speed.w ; Missile Speed (5-20)
 MaxDistance.w ; How far can it go (500-5000)
 CurrentDistance.w ; How far have we gone?
EndStructure

In this Structure we’re including how fast the missile will be able to
travel, how far it can travel, and then putting in a field that let’s us keep
track of how far it has already gone.

NewList Missile.Missiles()

The NewList command instructs PB to declare a new List. In this
instance, I elected to name this List Missile since each element will
contain data on a single missile. You may call this whatever you would
like. Note that NewList will automatically make the List global, so there
is no need to do any sort of scope on the definition. Also, whenever
referencing the Structure from this point on, be sure to do it using the
List name (Missile) and not the Structure name (Missiles).

After you’ve declared a List, you will need a way to add elements to it.
Consider the following snippet:

If AddElement(Missile()) <> 0
 Missile()\Speed = Random(15) + 5
 Missile()\MaxDistance = Random(4500) + 500
 Missile()\CurrentDistance = 0
Else
 MessageRequester("Error!", "Can't allocate memory for new element", 
  #PB_MessageRequester_OK)
EndIf

The first line informs PB to allocate a portion of memory for a single
element of the Missile() List. As long as the value returned by
AddElement is NOT zero(0), then we can continue on. If, however, PB
returns zero it means that it could not allocate the needed memory for
the element.

Next we start assigning values to our List. This is done by using the List
name following by the () identifier, a “\” character, and then the field
within the Structure we wish to populate. If you were to put
Missile\Speed = 5 you would receive an error. You must include the
() after the List name.

A quick note about the Random command: I’m using this command to
put in a random value every time the player presses a key. This
command returns a value between 0 and the number you put as the

80

argument. If you want to ensure Random returns a number between 5
and 20, say, you will need to do a little addition against the value
Random returns. In the example of the Speed field I’m doing just that.
I ask Random turn return a value between 0 and 15, and then add 5 to
whatever value is returned. So if Random returns 0, 0+5 = 5, and if it
returns 10, 10+5 = 15. You’ll find that in games development you’ll
almost always have uses for random values, so keep this command at
the ready.

Finally, if you look at the Else portion of the code you will see the
MessageRequester command. This command is useful in reporting
errors to players of your game. In this instance, I’m just informing the
user that the program was unable to successfully allocate memory using
the AddElement command. If you enter this command in your PB IDE
and press F1 while it is highlighted, you will see all the options available
with it.

One of the things you’ll want to be able to know is how many elements
are in a list at any given time. This data is acquired using the CountList
command (NOTE: use the ListSize command in PureBasic 5 as
CountList has been deprecated). The following line will place the
number of elements currently in the list into the variable Value.

Value.w = CountList(Missile())

Next we need a way to run through all of our elements, display some
information to the user, and update the elements as well.

ForEach Missile()
 MissileText.s = "Missile Speed: " + Str(Missile()\Speed) + 
  ", Max Distance: " + Str(Missile()\MaxDistance) + 
  ", Current Distance: " + Str(Missile()\CurrentDistance)
 DrawText(0,TextY,MissileText.s)
 TextY = TextY + 16

 ; now add the speed of the missile to its current distance
 Missile()\CurrentDistance = Missile()\CurrentDistance + Missile()\Speed

 ; if the distance is passed the maximum distance it can travel
 If Missile()\CurrentDistance > Missile()\MaxDistance
 ; delete the missile
 DeleteElement(Missile())
 EndIf
Next

The ForEach command acts similarly to a For command, except that it’s
specifically reserved for use with Lists. It starts at the beginning of the
List (known as the head) and traverses the list all the way until the end

81

(or the tail). Any call you make to the List in this loop will affect only
the element that ForEach is currently pointing at.

At the top you’ll see a very large assignment of data to MissileText. All
I’m doing here is putting together a string of information so the player
can see the information on each launched missile. Then I draw it up
and increment the Y counter so the lines don’t overwrite each other.

Immediately following I update the position of the current missile by
adding its cruising speed to its current location. Then I check to see if it
has passed it’s maximum traveling distance. If it has, I want to remove
this missile from the List. This is accomplished using the
DeleteElement command. If you call that command with the Missile()
argument, the element will be removed from your List.

Here is the complete source to our basic List Structure example:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; setup our structure
Structure Missiles
 Speed.w ; Missile Speed (5-20)
 MaxDistance.w ; How far can it go (500-5000)
 CurrentDistance.w ; How far have we gone?
EndStructure

; setup a new list for the missiles
NewList Missile.Missiles()

; set the ExitCondition to 0
ExitCondition = 0

; While the ExitCondition is 0
While ExitCondition = 0

 ClearScreen(ClearColor) ; clear the screen to black

 ; Set up the vertical control variable
 TextY = 0

 StartDrawing(ScreenOutput())

 ; Step through the missile list and print info

82

 ForEach Missile()
 MissileText.s = "Missile Speed: " + Str(Missile()\Speed) + 
  ", Max Distance: " + Str(Missile()\MaxDistance) + 
  ", Current Distance: " + Str(Missile()\CurrentDistance)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 ; now add the speed of the missile to its current distance
 Missile()\CurrentDistance = Missile()\CurrentDistance + Missile()\Speed
 ; if the distance is passed the maximum distance it can travel
 If Missile()\CurrentDistance > Missile()\MaxDistance
 ; delete the missile
 DeleteElement(Missile())
 EndIf
 Next

 ; display a message so the user knows how to fire/exit
 DrawText(0,400,"Press Spacebar to Fire -- ESC to Exit")

 StopDrawing()

 ; see if any key activity has happened
 ExamineKeyboard()

 ; to make sure that we don't just roll-up the missiles
 ; too quickly. Make sure the player has to let go of
 ; the fire key before firing again
 If KeyboardReleased(#PB_Key_Space)
 ; if the key was released, reset our Fired flag
 Fired = 0
 EndIf

 ; If the player hits the fire key
 If KeyboardPushed(#PB_Key_Space) And Fired = 0
 ; make sure we don't have more than 20 missiles out already
 If CountList(Missile()) < 19
 ; add the element of a new missile and populate it
 If AddElement(Missile()) <> 0
 Missile()\Speed = Random(15) + 5
 Missile()\MaxDistance = Random(4500) + 500
 Missile()\CurrentDistance = 0
 Else
 MessageRequester("Error!", "Unable to allocate memory for 
  new element", #PB_MessageRequester_Ok)
 EndIf
 EndIf
 ; set our flag to show that the missile has been fired
 ; this is so we can make sure the player releases the key
 Fired = 1
 EndIf

83

 ; if the player hits ESC, set our ExitCondition and quit
 If KeyboardPushed(#PB_Key_Escape)
 ExitCondition = 1
 EndIf

 FlipBuffers() ; show the output to the user

Wend

End ; end the program

Advanced Operations – Extending Structures
One of the coolest things about Structures is the ability to extend their
abilities without having to constantly change their core.

Imagine that you have a Structure that you’re using for a ship, but you
start thinking that while there are some commonalities between all
ships, there are also some major differences. For example, a freighter
is going to be more concerned with cargo space than it will be with
weapons. A fighter ship will be more concerned with speed and
dexterity than it will be with cargo space. And so on. But they both
need to have an engine, braking abilities, communications, some form
of protection (weapons, shields, armor), etc. So to create two entirely
separate Structures with essentially the same data is redundant.

Extending a Structure requires using the Extends command, as follows:

Structure Ships
 EngineType.w ; 0=slow, 1=medium, 2=Fast
 WeaponsType.w ; 0=basic, 1=advanced
 Shields.w ; 200-400
 Armor.w ; 200-400
EndStructure

Structure Freighters Extends Ships
 Name.s ; name of the freigther
 Cargo.l ; 20000 - 50000 units
EndStructure

Here we have a Structure defined that has all of our basic ship
elements. Then we have a Structure specifically for freighter-type ships
called, amazingly, Freighters. What you’ll note in the Freighters
definition though is that it contains “Extends Ships.” This instructs PB to
take all of the fields from the Ships Structure and duplicate them inside
o of Freighters. Now all you have to do is create a List for Freighters
and you’ll be able to reference all the fields in both Structures!

84

Here is the full code for the example:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; setup our structure
Structure Ships
 EngineType.w ; 0=slow, 1=medium, 2=Fast
 WeaponsType.w ; 0=basic, 1=advanced
 Shields.w ; 200-400
 Armor.w ; 200-400
EndStructure

; setup our freighter structure and inherit all of the structure
; elements from Ships
Structure Freighters Extends Ships
 Name.s ; name of the freigther
 Cargo.l ; 20000 - 50000 units
EndStructure

; setup our fighter structure and inherit all of the structure
; elements from Ships
Structure Fighters Extends Ships
 Name.s ; name of the figther
 SpeedBooster.w ; 0=level 1 (moderate), 1 = level 2 (Fast)
 Dexterity.w ; 0=level 1 (moderate), 1 = level 2 (Fast)
EndStructure

; setup a new list for the Freighters
NewList Freighter.Freighters()

; setup a new list for the Fighters
NewList Fighter.Fighters()

;Now let's just populate two Freighters by hand
AddElement(Freighter())
Freighter()\Name = "Big Freighter"
Freighter()\Cargo = 50000
Freighter()\EngineType = 0
Freighter()\WeaponsType = 0
Freighter()\Shields= 200
Freighter()\Armor = 300

AddElement(Freighter())

85

Freighter()\Name = "Medium Freighter"
Freighter()\Cargo = 35000
Freighter()\EngineType = 1
Freighter()\WeaponsType = 0
Freighter()\Shields= 250
Freighter()\Armor = 200

;And now let's populate two Fighters by hand
AddElement(Fighter())
Fighter()\Name = "Fast Fighter"
Fighter()\SpeedBooster = 1
Fighter()\Dexterity = 1
Fighter()\EngineType = 2
Fighter()\WeaponsType = 1
Fighter()\Shields= 300
Fighter()\Armor = 200

AddElement(Fighter())
Fighter()\Name = "Mid Fighter"
Fighter()\SpeedBooster = 0
Fighter()\Dexterity = 1
Fighter()\EngineType = 2
Fighter()\WeaponsType = 1
Fighter()\Shields= 400
Fighter()\Armor = 400

ClearScreen(ClearColor) ; clear the screen to black

; Set up the vertical control variable
TextY = 0

StartDrawing(ScreenOutput())

 DrawText(0,TextY,"FREIGHTERS")
 TextY = TextY + 32

 ; Step through the Freighter list and print info
 ForEach Freighter()

 MissileText.s = "Name: " + Freighter()\Name
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Cargo: " + Str(Freighter()\Cargo)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Engine Type: " + Str(Freighter()\EngineType)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

86

 MissileText.s = "Weapons Type: " + Str(Freighter()\WeaponsType)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Shields: " + Str(Freighter()\Shields)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Armor: " + Str(Freighter()\Armor)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 32
 Next

 ; display a message so the user knows how to fire/exit
 DrawText(0,400,"Press any key to see the Fighters")

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

ClearScreen(ClearColor) ; clear the screen to black

; Set up the vertical control variable
TextY = 0

StartDrawing(ScreenOutput())

 DrawText(0,TextY,"FIGHTERS")
 TextY = TextY + 32

 ; Step through the Fighter list and print info
 ForEach Fighter()

 MissileText.s = "Name: " + Fighter()\Name
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Speed Booster: " + Str(Fighter()\SpeedBooster)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Dexterity: " + Str(Fighter()\Dexterity)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Engine Type: " + Str(Fighter()\EngineType)

87

 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Weapons Type: " + Str(Fighter()\WeaponsType)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Shields: " + Str(Fighter()\Shields)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Armor: " + Str(Fighter()\Armor)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 32
 Next

 ; display a message so the user knows how to fire/exit
 DrawText(0,400,"Press any key to Exit")

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End ; end the program

Advanced Structure Operations – Pointers
One of the most interesting topics in programming is that of pointers.
Pointers are pieces of memory setup to point at other pieces of memory.
The user treats them much like a variable, but the value contained
within is a memory location to another variable or data structure.

In the previous section we demonstrated how to build a basic List.
What we’re going to do now is alter the method used to incorporate
Pointers. We get POWER! Remember that with power comes
responsibility, though, so make sure you’re careful.

It’s much more likely that you’ll end up with errors using the following
method than with the Basic List method described prior. This is because
the previous method handled all of the memory control in the
background. Here you’ll be able to directly address the memory
locations, so you will want to be careful about each step in the process.

Structure Ships
 Name.s ; Name of the ship

88

 WeaponsType.w ; 0=basic, 1=advanced
 Shields.w ; 200-400
 Armor.w ; 200-400
EndStructure

Our next move is to define a pointer that we can use to reference the
Ships Structure completely.

Define.Ships *Ship

The only thing really new here are the lines containing the * sign.
Firstly, note that an * before a variable name denotes that it is a
pointer.

NewList Fighter.Ships()

We still have to initialize our List so don’t neglect to do that!

Now that we’ve defined our pointer and our List, we can add to it.

AddElement(Fighter())
If Fighter()
 Fighter()\Name = "Fast Fighter"
 Fighter()\WeaponsType = 1
 Fighter()\Shields= 300
 Fighter()\Armor = 200
EndIf

AddElement(Fighter())
If Fighter()
 Fighter()\Name = "Mid Fighter"
 Fighter()\WeaponsType = 0
 Fighter()\Shields= 400
 Fighter()\Armor = 400
EndIf

Yes, we still call good old AddElement, but this time we want the return
value, which will be the memory location where this element starts, to
be assigned to our Ship pointer. If the pointer has a zero(0) value, then
AddElement was not successful in allocating the memory. From here we
assign values to the List just as before, except we use the Ship pointer
as our index controller.

To traverse the List, we must first make sure that the pointer is pointing
at the proper element. Which, in our case will be the first element:

89

*Ship = FirstElement(Fighter())

Then we start by making sure that Ship is pointing at something
tangible:

While *Ship <> 0

And, if so, we move in and print the values out.

MissileText.s = "Name: " + *Ship\Name
DrawText(0,TextY,MissileText.s)
TextY = TextY + 16
…etc…

In order to get to the next element in the list, we must use the Next
pointer that we setup in our original Structure.

*Ship = NextElement(Fighter())

This will then take us back the top of the While loop where we can see if
the Ship pointer is still pointing at something valid or not.

You can also traverse the list in reverse. You should try changing the
following code to start at the last element (LastElement) in the List
and write out the List backwards while using PreviousElement.

; Initialize the sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or OpenScreen(640,480,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_Ok)
 End
EndIf

ClearColor = RGB(0,0,0)

; setup our structure
Structure Ships
 Name.s ; Name of the ship
 WeaponsType.w ; 0=basic, 1=advanced
 Shields.w ; 200-400
 Armor.w ; 200-400
EndStructure

; Define a pointer to the Structure
Define.Ships *Ship

90

; setup a new list for the Freighters
NewList Fighter.Ships()

;And now let's populate two Fighters by hand, using pointers
AddElement(Fighter())
If Fighter()
 Fighter()\Name = "Fast Fighter"
 Fighter()\WeaponsType = 1
 Fighter()\Shields= 300
 Fighter()\Armor = 200
EndIf

AddElement(Fighter())
If Fighter()
 Fighter()\Name = "Mid Fighter"
 Fighter()\WeaponsType = 0
 Fighter()\Shields= 400
 Fighter()\Armor = 400
EndIf

ClearScreen(ClearColor) ; clear the screen to black

; Set up the vertical control variable
TextY = 0

StartDrawing(ScreenOutput())
 ; point to the first element in the Fighter List
 *Ship = FirstElement(Fighter())

 ; While it's a valid element
 While *Ship <> 0
 MissileText.s = "Name: " + *Ship\Name
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Weapons Type: " + Str(*Ship\WeaponsType)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Shields: " + Str(*Ship\Shields)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 16

 MissileText.s = "Armor: " + Str(*Ship\Armor)
 DrawText(0,TextY,MissileText)
 TextY = TextY + 32

 ; now point to the next element
 *Ship = NextElement(Fighter())

91

 Wend

 ; display a message so the user knows how exit
 DrawText(0,400,"Press any key to Exit")

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End ; end the program

Other List Commands
There are a few additional commands that we should briefly touch on
with Lists.

ClearList(ListName())

This command will literally wipe the List out. It’s used to delete the
entire List, instead of going through them one-by-one.

FirstElement(ListName())

Although we’ve already seen this one in action in our previous example,
its role is to return the location of the very first element in the List.

And of course, its counterpart:

LastElement(ListName())

…which returns the location of the very last element in the List. If you
only have a single element, both FirstElement and LastElement will
return the same value.

Next we have InsertElement. This is a very useful command as it will
allow us to push an element in between two existing elements, or even
right at the front of the List, if so needed. Maybe a high score would be
a good example:

FirstElement(ListName())
InsertElement(ListName())

92

ListName()\Score = 139820

If you want to find the numeric value of an element in your list (0…1…
2…3), you would use the ListIndex command.

Element = ListIndex(ListName())

To see how this works, I would recommend adding the ListIndex
command into one of the above examples, as part of the information
printout.

Please note that ListIndex does not return a memory location, but rather
a positional location within the List. So if you have 5 elements, it will
number them 0-4 for you. This is helpful when used in conjunction with
the SelectElement command.

SelectElement(ListName(),2)

This will set your List location to be at the 2nd element so you can
process that element directly. You’ll find this quite handy in many
situations, and it will save you time in your code by helping you avoid
unnecessary loops.

And, as we previously mentioned, there are the two keywords that help
you traverse the lists.

NextElement(ListName())
PreviousElement(ListName())

Finally, if you need the ability to set your List location to before the first
element in the list:

ResetList(ListName())

That’s all you need to do. Now you can start off using your NextElement
command and get your data out!

93

Chapter 8: Working with Memory

While PureBasic handles the majority of memory needs for you,
sometimes you’ll want to access memory buffers more directly. PB has
included tools for creating and managing these memory buffers, and
that’s what we’re going to discuss in this chapter.

Memory buffers can be used in various situations. They can be
completely controlled on a size basis, and they tend to be quite quick.
Their biggest drawback is that they are user-controlled. PureBasic
doesn’t handle all of the processing like it does with Structures, for
example, and arrays. You have to handle the processing in your own
style. In some ways this is good because you have the freedom to code
the memory chunks as you see fit. But it can also be quite challenging if
you’re not careful in your planning and use of these powerful tools.

Creating and Freeing Memory Buffers
Whenever you create a buffer it’s important to know that you are
allocating byte-sized chunks. If, for example, you plan to store a long
into a bank, you would have to create a buffer that is four bytes long. If
you created a buffer that is only 1 byte wide and tried to store a long
value, you would be allowed to do that but that could be very
problematic. The reason is that you’ve only been granted ONE byte of
memory, so the remaining 3 bytes are overwriting an area of memory
that hasn’t been reserved for you. These types of things can be very
dangerous and cause all sorts of program crashes and problems. So
make sure that you’re being very careful when working with memory
buffers.

Creating a buffer is easy. Just use the AllocateMemory command. Here
is the layout:

*MemoryBuffer = AllocateMemory(NumberOfBytes)

MemoryBuffer, in this example, is a unique pointer (hence the preceding
*) that you will use in reference to this particular buffer for processing.
It can be any name you choose, except for any PureBasic reserved
name. However, as with all variable declarations, you’d be wise to
make the name something relevant to its purpose.

It’s also a good idea to make sure that PureBasic was able to allocate
the memory requested. If the MemoryBuffer contains 0 (zero), then PB
was unsuccessful in creating the buffer and you should take appropriate
steps.

You also want to be sure to release the memory associated to your
buffer when you have finished using it. This is very important because
you could end up with tons of memory being allocated but never freed.
If you neglect to free the memory you may eventually run out of

94

memory in your game. Here is the format of the FreeMemory
command:

FreeMemory(*MemoryBuffer)

Here is a snippet that attempts to create a buffer and verifies if it was
successful or not:

 ; allocate 500 bytes of memory
*MemoryID = AllocateMemory(500)

; if we can’t, display an error and exit
If *MemoryID = 0
 MessageRequester("Error!", "Unable to Allocate Memory", 
  #PB_MessageRequester_OK)
 End
EndIf

This piece of code attempts to allocate 500 bytes of memory. If it can’t,
it will display a message to the user stating that it failed, and will then
exit. Again, it’s very wise to make sure that AllocateMemory was
successful in allocating the memory requested.

Poke and Peek
So after we’ve allocated memory, how do we use it? There are a
number of commands in the set, but most of them are similar in
function. To place a value into a bank you would use POKE, and to read
you would use PEEK. There are currently five POKE/PEEK types that you
have access to:

 PokeB / PeekB
 PokeW / PeekW
 PokeL / PeekL
 PokeF / PeekF
 PokeS / PeekS

The POKE commands are all formatted identically, with the exception of
PokeS which we’ll touch in a second. Let’s use PokeB as an example:

PokeB(*MemoryID,115)

Likewise, all of the PEEK commands share the same format:

Value = PeekB(*MemoryID)

Really, the only difference is the type of Value being used. This is an
important distinction, of course, but at least you won’t have to fiddle

95

around wondering if one command differs from the other simply due to
its data type.

Strings are handled a bit differently. Since a string may be any number
of bytes, PB needs to add a mark to it stating where the string ends.
This mark is a byte value of '0' that is automatically added after the last
character in the string. Whenever you retrieve a string (Peek), PB will
keep snagging memory until that '0' is hit. Let’s look at the PokeS and
PeekS commands:

PokeS(*MemoryID,”Hello”)
 … or…
PokeS(*MemoryID,”Hello”,5)

Notice that you can include the string length as an argument in the call.
This is completely optional, but you may find it useful for various
reasons. If you put a 5 as the length to POKE, PB actually will use 6
bytes because it has to incorporate that ‘0’ as the string’s terminator.
Likewise, PeekS will read in the length + 1.

Value.s = PeekS(*MemoryID)
 … or …
Value.s = PeekS(*MemoryID,5)

If you stored a value that is 5 bytes long and tried to read back 10
bytes, PB will only read the 5 bytes. This is because when PB hits byte
number 6, it will find the ‘0’ terminator. Once that’s found, the reading
stops.

Here is a list of the possible POKE/PEEK types and their respective sizes:

Here is a little piece of code that demonstrates a simple two-byte buffer
(or a Word) using POKE and PEEK:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment”, 
  #PB_MessageRequester_OK)
 End

96

EndIf

; Allocate 2 bytes of memory, WORD VALUE
*MemoryID = AllocateMemory(2)

If *MemoryID = 0
 MessageRequester("Error!", "Unable to Allocate Memory",
#PB_MessageRequester_Ok)
 End
EndIf

; store our value, using Poke
PokeW(*MemoryID,12123)

; Read back our value, using Peek
Value.w = PeekW(*MemoryID)

StartDrawing(ScreenOutput())

 ; Show the user the value
 DrawText(0,0,"The value in our memory buffer is: " + Str(Value))

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to exit")

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

; free the allocated memory
FreeMemory(*MemoryID)

End ; end the program

Resizing Allocated Memory
So what if you have a buffer all set up, but you find that you need to
expand its size? Maybe you are dynamically allocating buffer memory
for each new map that you load in. You could easily just free the
current buffer and re-create it, or you could use the ReAllocateMemory
command. Here is the format:

ReAllocateMemory(*MemoryID,10)

Resizing allocated memory is as simple as creating it, with the only
difference being that you already know the pointer name of the buffer!

97

It is still important that you check that PB was able to resize
successfully, as you do with AllocateMemory, so don’t leave out that
step. Again, here’s a little snippet that creates a bank and then resizes
it.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment”, 
  #PB_MessageRequester_OK)
 End
EndIf

; Allocate 2 bytes of memory, WORD VALUE
*MemoryID = AllocateMemory(2)

If *MemoryID = 0
 MessageRequester("Error!", "Unable to Allocate Memory",
#PB_MessageRequester_Ok)
 End
EndIf

; store our value, using Poke
PokeW(*MemoryID,12123)

; Read back our value, using Peek
Value.w = PeekW(*MemoryID)

StartDrawing(ScreenOutput())

 ; Show the user the value
 DrawText(0,0,"The value in our memory buffer is: " + Str(Value))

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to continue")

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

; Let's reallocate the memory to be a Long
ReAllocateMemory(*MemoryID,4)

If *MemoryID = 0

98

 MessageRequester("Error!", "Unable to ReAllocate Memory",
#PB_MessageRequester_Ok)
 End
EndIf

; store our value, using Poke - now a long
PokeL(*MemoryID,50000)
; Read back our value, using Peek
Value2.l = PeekL(*MemoryID)

StartDrawing(ScreenOutput())

 ; Show the user the value
 DrawText(0,0,"The new value in our memory buffer is: " + Str(Value2))

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to continue")

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

; free the allocated memory
FreeMemory(*MemoryID)

End ; end the program

So what happens to the data if you resize a buffer to a smaller size?
The data is gone. Anything past the resize point will not be contained,
but anything up to the resize point will remain.

Copying Memory Buffers
Copying data between two buffers is a snap. All you need to do is use
the CopyMemory command, which looks as follows:

CopyMemory(*SourceMemoryID,*DestinationMemoryID,Length)

If we had a buffer of 100 bytes and wanted to copy it to another buffer
of 100 bytes, we could use this code:

 CopyMemory(*SourceMemoryID,*DestinationMemoryID,100)

If we reference DestinationMemoryID it will contain the identical
information that SourceMemoryID contains.

99

Now here’s something that’s a bit interesting. What if we have a 2-byte
piece of memory (a Word) value, but we only copied the 1st byte? You’ll
get only the value that the first byte holds, that’s what will happen.
Enter the following code to see an example of this:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; Allocate 2 bytes of memory, WORD VALUE
*SourceMemoryID = AllocateMemory(2)
*DestinationMemoryID = AllocateMemory(2)

If *SourceMemoryID = 0 Or *DestinationMemoryID = 0
 MessageRequester("Error!", "Unable to Allocate Memory",
#PB_MessageRequester_Ok)
 End
EndIf

; store our value, using Poke
PokeW(*SourceMemoryID,12123)

; copy only 1 byte from the source
CopyMemory(*SourceMemoryID,*DestinationMemoryID,1)

; Read back our values, using Peek
Value.w = PeekW(*SourceMemoryID)
Value2.w = PeekW(*DestinationMemoryID)

StartDrawing(ScreenOutput())

 ; Show the user the value
 DrawText(0,0,"The value in our source buffer is: " + Str(Value))
 DrawText(0,16,"The value in our destination buffer is: " + Str(Value2))

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to continue")

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

100

; free the allocated memory
FreeMemory(*SourceMemoryID)
FreeMemory(*DestinationMemoryID)

End ; end the program

See how the first value is 12123, but the second is only 91? This is
because of how much the value of 2 bytes adds up to versus how much
the single byte is worth. Here is the Word layout:

101111101011011

If you go through and add that up using binary, you’ll get a value
12123. Now, here’s that same value with the bytes split:

1011111 | 01011011

Computers read bytes from right-to-left, so when we ask PureBasic to
copy only 1 byte in a 2-byte field, it will copy the right-most byte. If we
had a 4-byte field and asked PB to copy two of them, it would copy the
two right-most bytes. This means our resultant copy is:

01011011

Which, if you add it up, results in 91.

Comparing Memory
Since you will certainly have pieces of memory you will want to compare
(say for password checks or the like), PureBasic provides you with a
method of handling this.

Result = CompareMemory(*MemoryID1,*MemoryID2,2)

This will compare the contents in MemoryID1 to the contents in
MemoryID2, but only for the number of bytes requested, which in this
case is 2. If the comparison is equal, the CompareMemory command
will return a 1; if not, it will return a 0.

Here is an example based off of our previous CopyMemory example:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)

101

 End
EndIf

; Allocate 2 bytes of memory, WORD VALUE
*MemoryID1 = AllocateMemory(2)
*MemoryID2 = AllocateMemory(2)

If *MemoryID1 = 0 Or *MemoryID2 = 0
 MessageRequester("Error!", "Unable to Allocate Memory",
#PB_MessageRequester_Ok)
 End
EndIf

; store our value, using Poke
PokeW(*MemoryID1,12123)

; copy only 1 byte from the source
CopyMemory(*MemoryID1,*MemoryID2,1)

; Read back our values, using Peek
Value.w = PeekW(*MemoryID1)
Value2.w = PeekW(*MemoryID2)

; now compare the first 2 bytes of the memory buffers
Result = CompareMemory(*MemoryID1,*MemoryID2,2)

; now compare the first byte of the memory buffers
Result2 = CompareMemory(*MemoryID1,*MemoryID2,1)

StartDrawing(ScreenOutput())

 ; Show the user the value
 DrawText(0,0,"The value in our source buffer is: " + Str(Value))
 DrawText(0,16,"The value in our destination buffer is: " + Str(Value2))
 DrawText(0,32,"Comparing the first 2 bytes: " + Str(Result))
 DrawText(0,48,"Comparing the first byte only: " + Str(Result2))

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to continue")

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

; free the allocated memory
FreeMemory(*MemoryID1)

102

FreeMemory(*MemoryID2)

End ; end the program

String-Specific Commands
Strings have a few specific commands associated to them only. Where
we use CopyMemory and CompareMemory with our other types, we
would use CopyMemoryString and CompareMemoryString with strings.

First we’ll look at the CopyMemoryString command:

Result = CopyMemoryString(“Hello”,@*PointerToMemory)

CopyMemoryString is really just an extended version of PokeS. Where
PokeS does a ‘standard’ string copy, CopyMemoryString allows you to
copy data in a ‘streamed’ manner. You pass the command the address
to a memory pointer, and then you may copy data to that whenever
you’d like, streaming it in instead of the standard one-time copy. With
the streaming ability you can adjust the location in the memory buffer
by adjusting the pointer. If you want to go back 6 spots in the memory
buffer, do:

*PointerToMemory - 6

So if you had the string “Hi There!” and your pointer was sitting just
beyond the “!” in memory, you could change that string to say “Hi
Buddy!” using the following code:

*PointerToMemory – 6
CopyMemoryString(“Buddy!”)

Next, we look at the CompareMemoryString command:

Result = CompareMemoryString(*String1,*String2)
 … or …

Result = CompareMemoryString(*String1,*String2, 0, 6)

This command allows a simple one-to-one compare of two strings in
memory. Alternately, you can control how it compares the two strings
by adjusting the third argument (the mode), and how many characters
to compare by adjusting the fourth argument (length).

There are two modes available:
 0 – Compares the strings with case-sensitivity on. This means

that ‘A’ will not equal ‘a’ in the comparison.

103

 1 – Compares the strings without regard to case. This means
that ‘A’ will equal ‘a’ in the comparison.

The result returned is handled a bit differently than with the standard
CompareMemory command. Here is the breakdown of the returns:

 0 – This result means that the strings are equal.
 1 – Means that String 1 is greater than String 2
 -1 – Means that String1 is less than String 2

Here is an example piece of code that is built off of our previous
example:

; Initialize the sprite, keyboard, and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Allocate 20 bytes of memory
*MemoryID1 = AllocateMemory(20)
*MemoryID2 = AllocateMemory(20)

; set a pointer to our second memory buffer
*Pointer = *MemoryID2

If *MemoryID1 = 0 Or *MemoryID2 = 0
 MessageRequester("Error!", "Unable to Allocate Memory", 
  #PB_MessageRequester_Ok)
 End
EndIf

; store our value, using Poke
PokeS(*MemoryID1,"Hi there!")

; copy the string to our 2nd memory buffer
CopyMemoryString(*MemoryID1,@*Pointer)

; Read back our values, using Peek
Value.s = PeekS(*MemoryID1)
Value2.s = PeekS(*MemoryID2)

; now compare the two strings
Result = CompareMemoryString(*MemoryID1,*MemoryID2,1,6)

; and get the length of our second one
Length = MemoryStringLength(*MemoryID2)

104

If StartDrawing(ScreenOutput())
 ; Show the user the value
 DrawText(0,0,"The value in our source buffer is: " + Value)
 DrawText(0,16,"The value in our destination buffer is: " + Value2)
 DrawText(0,32,"Comparing the two strings: " + Str(Result))
 DrawText(0,48,"Length of memory string 2 is: " + Str(Length))

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to continue")
Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
EndIf

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

ClearScreen(ClearColor)

*Pointer - 6
CopyMemoryString("Buddy!")
Value.s = PeekS(*MemoryID1)
Value2.s = PeekS(*MemoryID2)

; now compare the two strings
Result = CompareMemoryString(*MemoryID1,*MemoryID2,1,6)

; and get the length of our second one
Length = MemoryStringLength(*MemoryID2)

If StartDrawing(ScreenOutput())
 ; Show the user the value
 DrawText(0,0,"The value in our source buffer is: " + Value)
 DrawText(0,16,"The value in our destination buffer is: " + Value2)
 DrawText(0,32,"Comparing the two strings: " + Str(Result))
 DrawText(0,48,"Length of memory string 2 is: " + Str(Length))

 ; display a message so the user knows how to exit
 DrawText(0,400,"Press any key to continue")
Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()", 
  #PB_MessageRequester_Ok)
 End
EndIf

105

StopDrawing()

FlipBuffers() ; show the output to the user

; wait for any key to be pressed
Repeat
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

; free the allocated memory
FreeMemory(*MemoryID1)
FreeMemory(*MemoryID2)

End ; end the program

106

Chapter 9: Procedures and Libraries

As you get deeper and deeper into game development, you’ll soon find
that you’re replicating a lot of work. Maybe you’ve already written code
that handles the various input devices (mouse, joystick, keyboard, etc.).
Why write those processes all over again? Also, your code is going to
get bigger and bigger as you continue developing. How will you maintain
all those pages effectively? Enter Procedures.

A procedure is a piece of code that you can call to perform a particular
activity and then, when it’s completed, return control back to the calling
code. Think of it as clicking on one of your computer’s applications…say
PureBasic. When you click on it to run, the computer takes over and
loads up PB. Upon completion, the computer gives control back to you.
Procedures act similarly, with the exception that they return control
back to the code that called them.

Procedures also have the capability to process information sent to them
and return information back based on the processing that was done.

For example, let’s say that each time a laser blast smacked your ship
you need to know what the resulting damage was. Well, maybe you
have a procedure that checks where on your ship was hit, what the
current armor was at the time of the hit and how much power the hit
delivered. From here the procedure processes all the data, does a
calculation and let’s you know what the total damage was.

Another extremely important use is to maintain fluency in your coding.
In other words, with procedures you can break up the code into
manageable chunks, with each “chunk” having a declarative name that
clearly identifies its purpose.

Declaring a Procedure
In order to use a procedure, you must first declare it before it is called.
Some people prefer to put all their procedures first in their source code,
but most prefer either putting them under after their main loop or in a
separate file altogether. I’m going to assume that you’re one of the
second lot, since there are more of those.

PureBasic has two commands for our procedures: Declare and
Procedure. Here is the layout of both:

Declare.<ReturnType> ProcedureName (Arguments)

 Procedure.<ReturnType> ProcedureName(Arguments)

The Declare command is used near the top of your code, before you call
the procedure from your main code. This is done so the compiler will be

107

aware of the procedure and how the procedure is supposed to be called.
The Procedure command is used at the top of the actual procedure you
are coding, and it basically replicates what you put in the Declare
command.

It’s a better method to either put your procedures above your main code
or to put them in a separate file and include them in your main code.
I’ve found that most people tend to do the later method. In the
following examples I will be using the Declare statement for clarity, but
as we get into building our own libraries I will be using this statement
only as necessary.

What you call the procedure is completely up to you, but the more
descriptive your name for it, the easier it will be to use it and recall its
purpose. This is important if you ever plan on using this procedure in
other programs.

 Examples of bad procedure names:

 Procedure a()
 Procedure MoveIt(It)
 Procedure Sideways()

When you look at these three example names, the only one that
remotely makes sense is MoveIt. The only problem is that you won’t
easily be able to integrate this procedure into another program because
the It portion of MoveIt is likely specific to the current program. Now,
that’s not necessarily a bad thing, as long as it is not your goal to reuse
this procedure.

Examples of good names:

 Procedure FireLaser(Direction)
 Procedure CheckCollisions(Image1, Image2)
 Procedure DisplayScore(CurrentScore)

Notice that each of these procedures is clearly named. If you ever want
to see if two images collide, simply call on CheckCollision and it’ll tell
you. Want to display the score? DisplayScore does the trick.

If you’re going to create a library, however, you may consider taking it a
step further.

Examples of good names for a library of, say, map routines:

 Procedure Map_Move(Direction)
 Procedure Map_CheckCollisions(Image1, Image2)
 Procedure Map_Load (CurrentScore)

108

Notice that I preface the procedure name with the word Map. This is
because all of the procedures within this particular library will be
specifically for map manipulation. If we share our library with someone
else, we should be sure that our library names won’t conflict with their
standard procedure names. They may already have a CheckCollisions
procedure, as it’s a common name, but since they’re opting to use our
map library, it’s not likely that they’ll have a Map_CheckCollisions
procedure.

Procedures most commonly take some data, do some form of
manipulation on the data, and return to you the result of the
manipulation. You can specify the type of value you want returned
following the procedure name with a period ‘.’ and then the return type.
The return types are as follows:

 b - Returns a Byte.
 s - Returns a String.
 w - Returns a Word.
 l – Returns a Long.
 f – Returns a Float.

So, if you had a procedure that added to floats, you may declare the
procedure as follows:

Declare AddFloats.f(Number1.f,Number2.f)

Another thing that I do when declaring my procedures is to place a
detailed comment above it with pertinent information. Such as:

 ;***
 ; Procedure: ProcedureName()
 ; By: Author
 ; Last Upd: Date
 ; Purpose: The purpose of this procedure
 ; Args: Describe what’s to be sent to this procedure
 ; Returns: Describe what the procedure will return
 ; Comments: Place any additional comments here
 ;***

I won’t do this on all my procedures, just ones that warrant it. Some
smaller procedures end up having more comments than code, so I tend
to be much less verbose with those. Also, there is no point in putting all
of this data with every single procedure in your library. In other words,
if you've created a bunch of map files, you know you're the author of
them all, so just put in the necessary bits. No args or returns or
comments? Don't bother putting them in.

109

Now, it’s certainly not necessary that you use this format or that you
comment your procedures at all. But I would highly recommend that
you do to at least some degree. Eventually, you’ll revisit your work (or
someone else will) and you’ll be very glad to know what you were
thinking at the time you were coding.

Passing Arguments and Returning Results
First thing I should qualify is what exactly a procedure argument is. An
argument is a piece of data that you send to a procedure for processing.
For example, if you wanted to add two numbers together, you would
send the numbers to the procedure. The procedure would then add the
two numbers and return the resultant value.

One of the major limitations of a procedure is that it can only return one
value, at least without the use of tricks. So, while you can send many
arguments, only one value can come back.

Here is an example program that has a bunch of procedures, all with
different return types:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

 Declare.b AddNumbers(iNumber1.b, iNumber2.b)
 Declare.s ConcatString(String1.s, String2.s)
 Declare.f AvgNumbers(float1.f, float2.f, float3.f)
 Declare.w GetArray(Location.w)
 Declare SetupShips()
 Declare.w GetShip(ShipID.b)
 Declare WaitKey()

 ; make a dummy array and fill it with values
 Global Dim ArrayValues.l(4)
 ArrayValues(0) = 100
 ArrayValues(1) = 200
 ArrayValues(2) = 300
 ArrayValues(3) = 400
 ArrayValues(4) = 500

 ; define a type for Ships
 Structure Ships
 ShipID.b ; what's it's ID?
 ShipName.s ; the name?
 Speed.b ; top speed (3-7)
 EndStructure

110

 Global NewList Ship.Ships()

 ; add a few ships. Note that this procedure does NOT
 ; return a value!
 SetupShips()

 ; call AddNumbers procedure and place the returned-value
 ; into the variable "byteValue"
 byteValue.b = AddNumbers(10,20)

 ; call ConcatString procedure and place the returned-value
 ; into the variable "stringValue"
 stringValue.s = ConcatString("How","dy")

 ; call AvgNumbers procedure and place the returned-value
 ; into the variable "floatValue"
 floatValue.f = AvgNumbers(1.495,3.772,11.1935)

 ; call GetArray procedure and place the returned-value
 ; into the variable "arrayValue"
 arrayValue.w = GetArray(3)

 ; call GetShip procedure and place the returned-value
 ; into the variable "ShipLocation"
 ShipLocation.w = GetShip(Random(9))
 ; now make sure we have that element selected
 SelectElement(Ship(),ShipLocation)

 ; Set up the vertical control variable
 TextY = 0

 StartDrawing(ScreenOutput())
 ; display returned values
 DrawText(0,TextY,"byteValue = " + Str(byteValue))
 TextY = TextY + 16

 DrawText(0,TextY,"stringValue = " + StringValue)
 TextY = TextY + 16

 DrawText(0,TextY,"floatValue = " + Str(floatValue.f))
 TextY = TextY + 16

 DrawText(0,TextY,"arrayValue = "+ Str(arrayValue))
 TextY = TextY + 32

 DrawText(0,TextY,"** Ship Info **")
 TextY = TextY + 16

 DrawText(0,TextY,"ID = " + Str(Ship()\ShipID))
 TextY = TextY + 16

111

 DrawText(0,TextY,"Name = " + Ship()\ShipName)
 TextY = TextY + 16

 DrawText(0,TextY,"Speed = " + Str(Ship()\Speed))
 StopDrawing()

 ; show the output to the users
 FlipBuffers()

 ; wait for a keypress
 WaitKey ()

 ; end the program
 End

 ;**
 ; P R O C E D U R E S
 ;**
 ; Author: John Logsdon
 ; Last Upd: 8/22/2012

 ;**
 ; Procedure: AddNumbers()
; Purpose: add two numbers and return the result
 ; Args: Two numbers
 ; Returns: Byte - Sum of the two numbers sent
;**
 Procedure.b AddNumbers(iNumber1.b, iNumber2.b)
 iSum.b = iNumber1 + iNumber2
 ProcedureReturn(iSum)
 EndProcedure

 ;**
 ; Procedure: ConcatString$()
; Purpose: concatonates two strings
 ; Args: Two strings
 ; Returns: the resultant string
;**
 Procedure.s ConcatString(String1.s, String2.s)
 ProcedureReturn(String1.s + String2.s)
 EndProcedure

 ;**
 ; Procedure: AvgNumbers()
; Purpose: Find the average of 3 floats
 ; Args: Two floats
 ; Returns: Sum of the two numbers sent
;**
 Procedure.f AvgNumbers(float1.f, float2.f, float3.f)
 avg.f = (float1 + float2 + float3) / 3

112

 ProcedureReturn(avg)
 EndProcedure

 ;**
 ; Procedure: GetArray()
; Purpose: Get a particular array value
 ; Args: location in the array
 ; Returns: The array value
;**
 Procedure.w GetArray(Location.w)
 ProcedureReturn(ArrayValues(Location))
 EndProcedure

 ;**
 ; Procedure: SetupShips()
; Purpose: adds a few ships to the Structure
;**
 Procedure SetupShips()
 For i = 0 To 9
 If AddElement(Ship()) <> 0
 Ship()\ShipID = i
 Ship()\ShipName = "Ship" + Str(i)
 Ship()\Speed = Random(4) + 3
 EndIf
 Next
 EndProcedure

 ;**
 ; Procedure: GetShip()
; Purpose: locates a ship and returns its index
 ; Args: Ship's ID
 ; Returns: the Index entry for the Ship
;**
 Procedure.w GetShip(ShipID.b)
 ForEach Ship()
 If Ship()\ShipID = ShipID.b
 Break
 EndIf
 Next
 ProcedureReturn(ListIndex(Ship()))
 EndProcedure

 ;**
 ; Procedure: WaitKey()
; Purpose: Wait for a keypress
;**
 Procedure WaitKey()
 Repeat
 ExamineKeyboard()
 Until KeyboardReleased(#PB_Key_All)

113

 EndProcedure

If you study that code in detail it should be pretty clear how to handle
each return case. And, yes, I know that the comments are way
overdone, was just doing that to show you how it can be handled for
different procedures.

Including Files
Whenever you create a file that contains procedures you will want to
reuse, you’ll have to have a way to let PureBasic know that you want to
include them in your main code. The relevant command is appropriately
named IncludeFile, or XIncludeFile. IncludeFile / XIncludeFile opens a
particular file and squishes it in with another file.

Let’s say you have a file called ShipFighter.PB and you have a bunch of
procedures in a file called ImageProcessing.PB. Instead of manually
cutting and pasting, you need a way to just tell PB to include
ImageProcessing.PB when it compiles your code. All you would do is
place the following line somewhere (preferably at the top of your code)
in the ShipFighter.PB file:

 IncludeFile “ImageProcessing.PB”

Now that piece of code will be inserted into your code at the position
that you called it.

But what if we had a number of libraries that you wanted to include in
our project, and those libraries all rely on yet another library?

If we use the IncludeFile command, PureBasic will complain because it
will see a bunch of procedures and variables being declared more than
once. What we need is a command that will include the procedures and
supporting code one time, but will make it accessible to all of our code
for calling. Fortunately, PB has a command just for this: XIncludeFile.

XIncludeFile “ImageProcessing.PB”

For most cases you can just use XIncludeFile, but there may be that
rare occurrence where you will want to make sure your procedures are
not available to all your code, hence the IncludeFile command.

As an example, let’s say that you have two libraries, Ships.pb and
Planets.pb. Now let’s say that each of those libraries relies on yet
another library called Starfield.pb. If you did the following:

[example piece of code for Ships.pb]

114

IncludeFile “Starfield.pb”

[example piece of code for Planets.pb]

IncludeFile “Starfield.pb”

[example piece of code for your main program]

IncludeFile “Ships.pb”
IncludeFile “Planets.pb”

PureBasic will give you an error during compilation. However, if you did
the following:

[example piece of code for Ships.pb]

XIncludeFile “Starfield.pb”

[example piece of code for Planets.pb]

XIncludeFile “Starfield.pb”

[example piece of code for your main program]

IncludeFile “Ships.pb”
IncludeFile “Planets.pb”

PureBasic will see that the Starfield.pb file is already included and will
not re-include it, so there won’t be any errors during compilation.

Libraries
When you put a bunch of related procedures in a file, you can officially
call that file a library. This is because it is now a “library of procedures.”
Pretty spiffy, no?

Here is a sample of what you can do. First, let’s split off a couple of the
procedures from our last example and put them in a file of their own.
I’ll name this file “myprocedures.pb” for fun. Here is what the contents
of that file will look like:

 ;**
 ; Sample library just to show how to set one up.
 ;**
 ; Author: John Logsdon
 ; Last Upd: 8/22/2012

 ;**

115

 ; Procedure: AddNumbers()
 ; Purpose: add two numbers and return the result
 ; Args: Two numbers
 ; Returns: Byte - Sum of the two numbers sent
 ;**
 Procedure.b AddNumbers(iNumber1.b, iNumber2.b)
 iSum.b = iNumber1 + iNumber2
 ProcedureReturn(iSum)
 EndProcedure

 ;**
 ; Procedure: AvgNumbers()
 ; Purpose: Find the average of 3 floats
 ; Args: Two floats
 ; Returns: Sum of the two numbers sent
 ;**
 Procedure.f AvgNumbers(float1.f, float2.f, float3.f)
 avg.f = (float1 + float2 + float3) / 3
 ProcedureReturn(avg)
 EndProcedure

 ;**
 ; Procedure: WaitKey()
 ; Purpose: Wait for a keypress
 ;**
 Procedure WaitKey()
 Repeat
 ExamineKeyboard()
 Until KeyboardReleased(#PB_Key_All)
 EndProcedure

And now, here is the main source file that shows how to call it:

; include the myprocedures library
XIncludeFile "myprocedures.pb"

If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

 ; call AddNumbers procedure and place the returned-value
 ; into the variable "byteValue"
 byteValue.b = AddNumbers(10,20)

 ; call AvgNumbers procedure and place the returned-value
 ; into the variable "floatValue"
 floatValue.f = AvgNumbers(1.495,3.772,11.1935)

116

 ; Set up the vertical control variable
 TextY = 0

 StartDrawing(ScreenOutput())
 ; display returned values

 DrawText(0,TextY,"byteValue = " + Str(byteValue))
 TextY = TextY + 16

 DrawText(0,TextY,"floatValue = " + Str(floatValue.f))
 StopDrawing()

 ; show the output to the users
 FlipBuffers()

 ; wait for a keypress
 WaitKey ()

 ; end the program
 End

IncludeFile/ XIncludeFile also makes it nice when others are working on
projects with you because each of you may have an area of expertise or
responsibility. For example, if you have a team member that’s focusing
on the menu system, you’ll not likely care about all the intricacies of the
code for the system, but you will care about what procedures are
available for you to use in piecing the final code together. And if your
team member commented the procedure tops well enough, you’ll also
know how to call each procedure, what its purpose is, and what you can
expect it to return.

Last thing I want to touch on is the IncludePath command. Often times
you may have a number of libraries that you wish to include in various
projects. As opposed to copying all of these libraries into each of your
individual development directories, you can store them all in a central
area and just let PB know where that area is.

IncludePath “libraries\gamelibs”
XIncludeFile “map.pb”
XIncludeFile “sprites.pb”

You could certainly just do the following:

XIncludeFile “libraries\gamelibs\map.pb”
XIncludeFile “libraries\gamelibs\sprites.pb”

117

But if you have a bunch of different library files all in one directory, it
just makes it cleaner to use the IncludePath command.

Note that from now on I will have a little library called “generic.pb” that
will contain the “WaitKey” procedure I setup. I will place this in a
directory called “libraries” and will include it with most every example.
This will save on code within the examples and will also help get you
used to using libraries. You should expand this library with any generic
procedures you end up writing.

118

Chapter 10: Working with Files

The ability to save and load information from files will be extremely
useful to you as your game development prowess grows. You’ll have
more and more data to process. Everything from map files to story
lines to player save files to debugging information. If you look at almost
any commercial quality game available today, you’ll see that there are
tons of files that make up the game’s directories. One day your games
will be like this too, so you may as well get used to files early on in your
development career.

Files come in all shapes and sizes. There are binary files, full of what
appears to be gibberish (it’s not gibberish, mind you…just looks that
way). There are also text files, which you can open in any editor and
read clearly. Some files are enormous, containing all the necessary
data to make up a full game level, while others contain only one or two
lines.

So why are they different? The answer to that comes in the design
phase. Let’s say, for example, that your game allows a user to select
the video mode to use when playing. You could require that the user
select this every time she plays, but that would be annoying. Why not
instead use a tiny file that is updated upon the change of the graphics
mode selection, and then each time your game loads it reads that file
and sets the mode accordingly? This file may only be one byte in
length. Sounds like a waste of a file, but your computer doesn’t care
and since it’s only read in at the beginning of your game, it’s not going
to impact performance one iota. But it’ll make your player much
happier.

Taking another example, let’s say that you have a file that is used to
keep track of where the player is in the game. This file contains all the
“secrets” to your game, such as hidden objects, opened and closed
paths, keys for doors, etc. Well, if you make this a straight text file,
then any player can simply open it up and have a look at what to do to
pass the level. So in this case you may decide to use a binary file
(which looks more like gibberish). This will stop the common user from
finding out your secrets, but more advanced users can easily get past
this. So maybe your file also contains encryption and compression to
further protect the data.

As you can see, the choice is yours on how you want to configure your
files, so let’s start talking about the basics of file manipulation.

Creating a File
PureBasic offers a number of file manipulation commands, but typically
the best place to start in describing file processing is by writing to a file.
In order to write to a file, you must first have a file to write to.
Fortunately, PureBasic handles this in one command. The CreateFile

119

command literally creates a file for writing. The command layout is as
follows:

FilePtr = CreateFile (#File,FileName.s)

Be careful when using this command because if you already have a file
with the name you pass to the CreateFile command, PB will overwrite
that file. Also, note that you must include the full path to the file. If
you don’t, PB will use the same directory that your program currently
resides in to create the file.

The #File argument may contain any number you select as an identifier
for this file. If the number is too high, you will get an error. If the
number conflicts with a previously opened file, PB will close the
previously opened file and use the file you just requested. In order to
avoid this complication, you can replace that argument with the
PureBasic constant #PB_Any. If CreateFile receives this constant as the
#File argument, it will find an open value and return it to your FilePtr.
Then you can just reference the FilePtr value when doing operations on
your file.

If you specify the #File argument, then the result will just tell you if the
file was successfully created or not. Any further access to the file must
be made using the same handle you have specified as the #File
parameter. On the other hand, if you use #PB_Any as the argument,
then the result will not just tell you about success or failure. Instead, it
will return you the handle you'll have to use for accessing the file. For
both cases, a return value of 0 (zero) means the file could not be
created, in which case you must avoid trying to access the file.

Writing to a File
Our next step is to determine the type of value we want to write out.
There are currently 7 different write options to choose from, most of
which are for binary files only. Here they are and what each is for:

 WriteAsciiCharacter: Writes an ASCII character (1-byte)
 WriteByte: Writes a single byte
 WriteCharacter: Writes a character number (1-byte ASCII, 2-

bytes Unicode)
 WriteData: Writes the contents of a specific memory buffer
 WriteDouble: Writes a double number (8-bytes)
 WriteFloat: Writes a floating-point value (4-bytes)
 WriteInteger: Writes an integer number (4-bytes on 32-bit, 8-

bytes on 64-bit)
 WriteLong: Writes a long number (4-bytes)
 WriteQuad: Writes a quad number (8-bytes)
 WriteString: Writes a character string
 WriteStringFormat: Writes a Byte Order Mark
 WriteStringN: Writes a character string and includes a line feed

120

 WriteUnicodeCharacter: Writes a unicode character (2-bytes)
 WriteWord: Writes a word number (2-bytes)

With the exception of WriteData, all of these commands have the same
format:

WriteByte(FilePtr, Value.b)
WriteWord(FilePtr, Value.w)
WriteStringN(FilePtr, Value.s)

 etc...

The WriteData command, however, uses the following format:

WriteData(FilePtr, *MemoryBufferID, LengthToWrite)

When using the WriteString/WriteStringN commands you are essentially
telling PureBasic that you want your file to have easily readable text.
This could be so you can allow people to customize the game via the
file. You can still store out numeric data, of course, using the same
method that you did with the DrawText command. So, for example, if
you wanted to write out a line that had the contents of a numeric
variable, you would do this:

WriteString(FilePtr , “Here is the value” + Str(Value))

After finishing up with a file, we should be sure to close the file using
the CloseFile command. If you don’t properly close a file it could
become corrupted, so take care to do this.

Let’s put together a small program that writes out two lines to a text
file.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; include our generic library
XIncludeFile "../libraries/generic.pb"

; create the file
FilePtr = CreateFile(#PB_Any,"filetest.txt")

If FilePtr = 0
 MessageRequester("Error!", "Unable to Create File", #PB_MessageRequester_Ok)
 End

121

EndIf

; write our strings out to the file
WriteStringN(FilePtr,"Hello, PureBasic!")
WriteStringN(FilePtr,"Testing...testing...1...2...3!")

; close the file
CloseFile(FilePtr)

; put up a little message to the user that we're done
If StartDrawing(ScreenOutput())
 DrawText(0,0,"File created and written to. Press any key to exit")
Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
EndIf

StopDrawing()

; show the output to the users
FlipBuffers()

; wait for a keypress
WaitKey ()

; end the program
End

Reading From a File
In order to read from a file, we must first open that file. When opening
a file, PureBasic will return a non-zero Result if successful, and a zero if
not. Again, you may use the #PB_Any option in place of #File, which
cause PB to store the file handle to the Result. Here is the format of the
ReadFile command:

FilePtr = ReadFile(#File,FileName.s)

From here you simply use one of the Read commands below:

 ReadAsciiCharacter: Reads an ASCII character (1-byte)
 ReadByte: Reads a single byte
 ReadCharacter: Reads a character number (1-byte ASCII, 2-

bytes Unicode)
 ReadData: Reads the contents from a file into a specific memory

buffer
 ReadDouble: Reads a double number (8-bytes)
 ReadFloat: Reads a floating-point value (4-bytes)

122

 ReadInteger: Reads an integer number (4-bytes on 32-bit, 8-
bytes on 64-bit)

 ReadLong: Reads a long number (4-bytes)
 ReadQuad: Reads a quad number (8-bytes)
 ReadString Reads a character string to a file until it finds an

end-of-line character
 ReadStringFormat: Reads a Byte Order Mark
 ReadUnicodeCharacter: Reads a unicode character (2-bytes)
 ReadWord: Reads a word number (2-bytes)


The idea here is that whatever you used to write the value out, you in
return use the read equivalent. Also, it’s important to note that the
formatting is a little different as well. Here is the basic layout:

Value.b = ReadByte(FilePtr)
Value.w = ReadWord(FilePtr)
Value.l = ReadLong(FilePtr)

…and for ReadData (notice it’s almost identical to its counterpart):

Length = ReadData(FilePtr ,*MemoryBufferID,LengthToRead)

The Length result will contain the actual number of bytes read.

Now let’s read in and display the values in the file that we just created
with the sample code above:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; include our generic library
XIncludeFile "../libraries/generic.pb"

; open the file for reading
FilePtr = ReadFile(#PB_Any,"filetest.txt")

If FilePtr = 0
 MessageRequester("Error!", "Unable to Read File", #PB_MessageRequester_Ok)
 End
EndIf

; read in our strings from the file
String1.s = ReadString(FilePtr)
String2.s = ReadString(FilePtr)

123

; close the file
CloseFile(FilePtr)

; show the reads
If StartDrawing(ScreenOutput())
 DrawText(0,0,"String1: " + String1)
 DrawText(0,16,"String2: " + String2)
 DrawText(0,400,"Press any key to exit")
Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
EndIf

StopDrawing()

; show the output to the users
FlipBuffers()

; wait for a keypress
WaitKey ()

; end the program
End

What if you want to open a file for reading and writing? In other words,
you don’t want to have to use CreateFile to do all your work and then
close and use ReadFile to read everything, etc. You would use the
OpenFile command.

This command will create a file if it does not already exist, otherwise it
will just open it. But it will allow you to read and write to the file real-
time. In fact, you have to use this command to alter any existing file
because CreateFile will overwrite an existing file.

Moving Around Inside of Files
Whenever you read or write a file an internal file “pointer” moves
around to keep your position within that file. Imagine the pointer
literally. It’s just a piece of memory that holds (points at) a specific
location in the file. Each time you read or write a character, the pointer
increases to point to the position beyond its current position. This is an
important concept to grasp because you’ll undoubtedly have a need to
move around inside your files in order to update them dynamically.

PB offers a few commands to help you keep track of this pointer, and to
move it around accordingly. The first command is called Loc and its job
is to simply tell you the current position that the pointer is at in your
file. Here’s the format:

124

FilePosition = Loc()

The second command is called FileSeek and it allows you to position the
pointer wherever you want in the file, as long as it’s a valid position.

FileSeek(FilePosition)

Finally, you can use the Eof command to see if you’ve reached the end
of the file. This is so you don’t overrun the pointer.

Result = Eof(#File)

This command will return non-zero if the end of the file has been hit or a
zero if not.

Now that we have this stuff under our belts, let’s take our previous file,
open it and change the second line to say something else:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; include our generic library
XIncludeFile "../libraries/generic.pb"

ClearColor = RGB(0,0,0)

; open the file for reading
FilePtr = OpenFile(#PB_Any,"filetest.txt")

If FilePtr = 0
 MessageRequester("Error!", "Unable to Read File", #PB_MessageRequester_Ok)
 End
EndIf

; read in our 1st from the file
String1.s = ReadString(FilePtr)

; save the current file position
FilePosition.w = Loc(FilePtr)

; read in the 2nd string
String2.s = ReadString(FilePtr)

; go back to the beginning of the 2nd string
FileSeek(FilePtr,FilePosition)

125

; write a new string
WriteStringN(FilePtr,"Testing...testing...4...5...6!")

; close the file
CloseFile(FilePtr)

; show the reads
If StartDrawing(ScreenOutput())
 DrawText(0,0,"String1: " + String1)
 DrawText(0,16,"String2: " + String2)
 DrawText(0,400,"Press any key to see the changes...")
Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()", 
  #PB_MessageRequester_Ok)
 End
EndIf

StopDrawing()

; show the output to the users
FlipBuffers()

; wait for a keypress
WaitKey()

ClearScreen(ClearColor)

; open the file for reading
FilePtr = OpenFile(#PB_Any,"filetest.txt")

If FilePtr = 0
 MessageRequester("Error!", "Unable to Read File", 
  #PB_MessageRequester_Ok)
 End
EndIf

; read in our newly changed strings
String1.s = ReadString(FilePtr)
String2.s = ReadString(FilePtr)

; close the file
CloseFile(FilePtr)

; show the altered reads
If StartDrawing(ScreenOutput())
 DrawText(0,0,"String1: " + String1)
 DrawText(0,16,"String2: " + String2)
 DrawText(0,400,"Press any key to exit")
Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",

126

  #PB_MessageRequester_Ok)
 End
EndIf

StopDrawing()

; show the output to the users
FlipBuffers()

; wait for a keypress
WaitKey ()

; end the program
End

Do note that the line of text we used to overwrite our previous line is
the same length. If our new data had been shorter, we would still have
leftover data in the file.

A Quick Binary Example
Just so you can see how binary files look and such, here is a quick
example that does creates a file, writes binary data to it, reads the data
back in and display the result.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; include our generic library
XIncludeFile "../libraries/generic.pb"

ClearColor = RGB(0,0,0)

; open the file for reading
FilePtr = CreateFile(#PB_Any,"filetest.bin")

If FilePtr = 0
 MessageRequester("Error!", "Unable to Create File", #PB_MessageRequester_Ok)
 End
EndIf

; create a couple of buffer for the Write/Read Data commands
*MemoryBuffer1 = AllocateMemory(15)
*MemoryBuffer2 = AllocateMemory(15)
PokeS(*MemoryBuffer1,"Five Thousand!")

127

; write out our data
WriteByte(FilePtr,50)
WriteWord(FilePtr,500)
WriteLong(FilePtr,5000)
WriteFloat(FilePtr,5000.5)
WriteData(FilePtr,*MemoryBuffer1,15)

; close the file
CloseFile(FilePtr)

; show the reads
If StartDrawing(ScreenOutput())
 DrawText(0,0,"File created!")
 DrawText(0,400,"Press any key to read the data...")
Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
EndIf

StopDrawing()

; show the output to the users
FlipBuffers()

; wait for a keypress
WaitKey()

ClearScreen(ClearColor)

; open the file for reading
FilePtr = OpenFile(#PB_Any,"filetest.bin")

If FilePtr = 0
 MessageRequester("Error!", "Unable to Read File", 
  #PB_MessageRequester_Ok)
 End
EndIf

; read in the binary data from the test file
value1.b = ReadByte(FilePtr)
value2.w = ReadWord(FilePtr)
value3.l = ReadLong(FilePtr)
value4.f = ReadFloat(FilePtr)
ReadData(FilePtr,*MemoryBuffer2,15)
value5.s = PeekS(*MemoryBuffer2,15)

; close the file
CloseFile(FilePtr)

; show the altered reads

128

If StartDrawing(ScreenOutput())
 DrawText(0,0,"Byte: " + Str(value1))
 DrawText(0,16,"Word: " + Str(value2))
 DrawText(0,32,"Long: " + Str(value3))
 DrawText(0,48,"Float: " + Str(value4.f))
 DrawText(0,64,"Data: " + value5)
 DrawText(0,400,"Press any key to exit")
Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
EndIf

StopDrawing()

; show the output to the users
FlipBuffers()

; wait for a keypress
WaitKey ()

; end the program
End

You should use a text editor to go and try to read the file “filetest.bin”
so you can see how it looks. Some of the text will be readable, but
most is not. This type of file will help stop most people from breaking
into your files, but it certainly shouldn’t be considered enough to stop
even the most casual of hackers out there. For that you will need to
have encryption algorithms and various other tricks, which,
unfortunately, is beyond the scope of this writing. There are many
books and Internet sites available that discuss how to incorporate these
though, and there are also a number of libraries available to help you
protect your data as well.

Miscellaneous File Commands
There are a few remaining commands that you should be aware of: Lof,
IsFile, and UseFile.

The Lof command will return, in bytes, the actual size of a file. The
format of this command is:

Result = Lof()

IsFile checks the validity of an opened file, and makes sure it’s ready to
use.

Result = IsFile(#File)

129

If the Result is non-zero then the file is ready to use.

Finally, the UseFile command allows the programmer to set the internal
PB pointer, for the text file commands, to an opened file.

UseFile(#File)

While you may have multiple files open at any given time, PB only
references one at a time. UseFile makes it so you can control which one
is to be referenced.

130

PART 2: PB GAME TOOLS

Chapter 11: Colors and Drawing Primitives

When I used to hear terms like "primitives" I had no idea what people
were talking about. Well, it's not as bad as you might think. Basically, a
primitive is something that is a building block for more advanced
graphics. For example, in order to draw a line, you must use pixels. To
draw a box you use lines. To draw a ship you use a bunch of things, like
cubes, spheres, cylinders, and cones...and those can be made using
triangles.

But since you’ll want all of these primitives to have varied colors, so
they’re not too bland, you’ll also want to use colors.

Getting and Setting Colors
Colors will be changed constantly in your game. You’ll have specific text
types that will show up brighter than other text. You’ll have pixel
effects that need to have a variety of colors to have deeper impact. I’m
sure you can think of a million reasons for using colors in your game.

Because of this, you need to be familiar with not only how to set colors,
but also how to remember the current color before doing changes. It
wouldn’t look very good to have a pixel turn red and therefore all of
your text turned red also (unless that was your plan). So being able to
know what the current color is will be a key factor in color control and
manipulation.

In order to tell PB what color you want to use, you have to understand
the concept of mixing three key values: R, G and B. These are the short
names for Red, Green and Blue, respectively. In the same way a painter
can mix basic ink colors in order to get different pallets, so you can mix
the RGB of your pixels to accomplish the same. Unfortunately,
computers mix colors a little bit different, but I’m pretty sure you’ll get
the hang of it soon enough.

The command for specifying the color you want to use is shown below:

FrontColor(Red,Green,Blue)

This will set all further draws for pixels, lines, boxes, circles, and even
fonts (characters) to use the color you requested. The values passed for
each argument must be between 0 and 255. Sending 255,255,255 to
the FrontColor command would set the color to white. Sending 0,0,0
would set it to black. You can combine these numbers in any fashion
that you see fit in order to make whatever colors you want.

Many of the drawing commands have an option for setting the color
right in their argument list. But if you elect not to use the optional color
argument, PB will take whatever you last assigned in the FrontColor
command and use that. The optional color you can pass to the drawing

134

commands will not be separated in R, G and B, but mixed into a 24-bit
value, making it a single parameter in the command call. In order to
obtain a mixed value, you should use the RGB command:

MixedValue = RGB(Red,Green,Blue)

Once you have drawn a screen, you can get the color of a particular
point on that screen by using the Point command. The format of this
command is:

ColorValue = Point(X, Y)

Point returns the 24-bit mixed color value of the pixel found at the X, Y
location. Note that it will return the 32-bit information if the drawing
mode is set to one of the alpha channel modes. If it's not set, then the
alpha channel is set to 0.

There are three commands in PureBasic that you can use to extract the
R, G and B values from a given 24-bit mixed value, and the names of
these commands are all suggestive:

 Red() – gets the Red component of a 24-bit color mixed value.
 Green() – gets the Green component of a 24-bit color mixed value.
 Blue() – gets the Blue component of a 24-bit color mixed value.

So, if you get the color of a point on the screen and want to know the
amount of Red that was used to draw that point, you can do this:

ColorValue = Point(X, Y)
RedAmount = Red(ColorValue)

The same is valid for the other components:

ColorValue = Point(X, Y)
RedAmount = Red(ColorValue)
GreenAmount = Green(ColorValue)
BlueAmount = Blue(ColorValue)

Another point to note is that the ClearScreen command can be used to
clear the screen to a particular color, using the RGB command, as we’ve
seen in prior chapters:

ClearScreen(RGB(Red,Green,Blue))

Dealing with Pixels
A pixel (a condensed word meaning picture element) is just a dot on the
screen. When you combine a bunch of these dots, you can make most
any image come to life. Everything you see on the screen, from the
letters to icons to even the mouse cursor, is all made using pixels.

135

In order to draw a pixel to the screen, you would use the PureBasic Plot
command. This command takes the current color and draws a pixel at
the corresponding X, Y position on the screen. Alternately, using the
method below, you can include the color directly into the Plot command
call. To do this, it’s easiest to use the RGB command. The following
code will randomize colors and draw pixels over most of the screen until
you press a key to exit.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

Repeat
 If StartDrawing(ScreenOutput())
 For y=0 To 449
 For x=0 To 639
 ; choose random colors
 r = Random(255)
 g = Random(255)
 b = Random(255)
 ; draw out the pixel in the selected color
 Plot(x,y,RGB(r,g,b))
 Next
 Next
 DrawText(0,460,"Press any key to exit...")
 Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
 EndIf

 StopDrawing()

 ; show the output to the users
 FlipBuffers()

 ; see if the user has pressed a key
 ExamineKeyboard()
Until KeyboardPushed(#PB_Key_All)

; end the program
End

Enter that in and you’ll see a ton of pixels start filling up your screen.

136

Drawing Lines
A line is basically just a bunch of plotted points, or pixels. The problem
is that if you attempt to manually plot the points necessary to make a
line you’ll notice a lot of weird things.

Firstly, it’ll probably be quite a bit slower than just using PB’s built-in
Line and LineXY commands. Secondly, you’ll need to compensate for
the fact that moving along an X-axis that has a tighter ratio of pixels will
make all of your Y-axis pixels appear to jump. To understand this more
clearly, look at the following graphic:

(Figure 11.1)

See how the first line contains five dots that are all tightly lined up, yet
the diagonal dots have a rather large gap between them? This is
exactly the kind of thing you can expect to deal with when trying to
implement your own line drawing function. The reason this occurs, as
the above graph shows, is because there are fewer graphing points on
the Y-axis then there are on the X-axis.

You’ll be dealing with resolutions such as 640x480 and 1024x768. In all
cases the number of pixels wide will be different than the number high.

137

There are many algorithms for dealing with this issue, such as the
famous Brensenham algorithm, but discussing those topics is beyond
the scope of this book. Search the web for Brensenham and you’ll likely
find many references.

Fortunately, we don’t have to deal with this issue since the PureBasic
Line and LineXY commands handle it for us. Here’s the format of the
Line command:

Line(StartX, StartY, Width, Height, [optional color])

To see the Line command in action, enter in the following code:

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

Repeat
 ClearScreen(ClearColor)
 If StartDrawing(ScreenOutput())
 For lines = 0 To 1000
 ; choose random colors
 r = Random(255)
 g = Random(255)
 b = Random(255)
 ; draw out the line in the selected color, at random places and sizes
 Line(Random(639),Random(449),Random(150),Random(150),RGB(r,g,b))
 Next
 DrawText(0,460,"Press any key to exit...")
 Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
 EndIf

 StopDrawing()

 ; show the output to the users
 FlipBuffers()

 ; see if the user has pressed a key
 ExamineKeyboard()
 Delay(1)
Until KeyboardPushed(#PB_Key_All)

138

; end the program
End

The Line command is used to draw from a single known point to a
distance on both the X and Y planes that may be variable. If you
wanted to use a line as a missile, say, you would always know that the
line is 5 pixels long moving horizontally across the screen. And the
starting X point would increase a certain amount each frame (to give the
appearance of movement). So, your call to the Line command may look
like this:

Line(MissileX,MissileY, 5,0)

Each loop iteration you would update the MissileX value and the line
would just draw from its new starting point. You won’t have to worry
about where it ends because PB will take care of that for you since you
gave it the length of 5.

If you use the LineXY command, however, you will have to tell PB not
only where you want the starting point to be, but also specifically where
you want the ending point to be. This can give you better control over
your lines, certainly, but may be a little more tedious. Here is the same
snippet for that missile movement using LineXY.

LineXY(MissileX,MissileY, MissileX+5,MissileY)

And here is our prior full example using LineXY instead of Line.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

Repeat
 ClearScreen(ClearColor)
 If StartDrawing(ScreenOutput())
 For lines = 0 To 1000
 ; choose random colors
 r = Random(255)
 g = Random(255)
 b = Random(255)

139

 ; draw out the line in the selected color, at random places and sizes
 LineXY(Random(639),Random(449),Random(150),Random(150),RGB(r,g,b))
 Next
 DrawText(0,460,"Press any key to exit...")
 Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
 EndIf

 StopDrawing()

 ; show the output to the users
 FlipBuffers()

 ; see if the user has pressed a key
 ExamineKeyboard()
 Delay(1)
Until KeyboardPushed(#PB_Key_All)

; end the program
End

Rectangles
To put up rectangles in PB, you use the Box command. You can make
the rectangles as large or small as you want as well. Here is the layout
for this command:

Box(StartX, StartY, Width, Height, [Optional Color])

The following code will draw a bunch of unfilled and filled rectangles all
over the screen.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

Repeat
 ClearScreen(ClearColor)
 If StartDrawing(ScreenOutput())
 For lines = 0 To 1000
 ; choose random colors
 r = Random(255)

140

 g = Random(255)
 b = Random(255)
 ; draw out the line in the selected color, at random places and sizes
 Box (Random(639),Random(449),Random(150), Random(150),RGB(r,g,b))
 Next
 DrawText(0,460,"Press any key to exit...")
 Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
 #PB_MessageRequester_Ok)
 End
 EndIf

 StopDrawing()

 ; show the output to the users
 FlipBuffers()

 ; see if the user has pressed a key
 ExamineKeyboard()
 Delay(1)
Until KeyboardPushed(#PB_Key_All)

; end the program
End

If you want to have the boxes be unfilled, add the DrawingMode
command under the StartDrawing command, as follows:

 If StartDrawing(ScreenOutput())
 DrawingMode(4) ; ADD THIS LINE
 For lines = 0 To 1000

The DrawingMode command allows you to control the way things are
drawn in PB. There are 4 primary options, but they can all be combined
in various ways. The options are:

 0 (#PB_2DDrawing_Default) – This is the default. Text has
backgrounds, shapes (boxes, circles, etc.) are filled.

 1 (#PB_2DDrawing_Transparent) – The background behind the
text is transparent.

 2 (#PB_2DDrawing_XOr) – Enable the XOR’d mode (all graphics
XOR’d with current background).

 4 (#PB_2DDrawing_Outlined) – Enable outlined shapes. Circles,
boxes, etc. will be drawn unfilled.

To combine these, you would use the Logical OR symbol, “|”

141

 DrawingMode(2 | 4) ; Enable XOR and make shapes unfilled

Circles and Ellipses
The final primitives we’re going to discuss are the circle and the ellipse.
The circle has a starting point at its center and we need to provide the
radius to evenly expand it outward from that point. The ellipse, on the
other hand, allows us to control the radius on both the X and Y planes,
thus allowing variance in height and width.

Here are the layouts for both commands:

Circle(X, Y, Radius, [Optional Color])
Ellipse(X, Y, RadiusX, RadiusY, [Optional Color])

Using those layouts, go ahead and alter the code in the box example,
incorporating first the circle to see how it works, and then the ellipse.

142

Chapter 12: Working with Sprites

Now I know you’ve been waiting to get to this part of the book, but keep
in mind that everything in Section 1 is extremely important for you to
understand in order to make games with PureBasic. You’ll be spending
the majority of your development time working with algorithms, only
using images to convey your game’s premise. So make sure you
understand all that’s gone on up to now!

From the player’s point of view, graphics are the life of the game.
Whether stunningly beautiful or ruggedly crude, the images you display
will set the tone for your game. You don’t have to be an amazing artist
to create amazing games either. I would say that there are a good
number of games that have great game play, but not so great artwork.
But you should do the best artwork you can, or consider working with an
artist that has decent skills. The worst thing you could do is code a
game that nobody even gives a second glance at because the artwork is
poor. Be as picky with your art as you are with your code…and be very
picky with your code.

Basic Loading and Displaying of Sprites
Let’s start out with loading an image and displaying it. No animation at
this point, we just want to load something in and draw it up on the
screen.

To load the image, we’ll need to use the PB command LoadSprite.
Pretty intuitive, no? Here’s the layout for the command:

Result = LoadSprite(SpriteNumber, FileName [,Optional Mode])

You can either assign a unique number that you choose, using the
SpriteNumber argument, in order to keep track of the sprite, or you can
let PB give you a number by passing #PB_ANY. If you decide to allow PB
to create a number, that number will be returned in the Result value. If
you manually assign a number, just be sure that Result does not equate
to zero. If it does, that means an error has occurred.

The second argument is the name of the file that contains your sprite
image.

Finally, you have the option to include instructions for how you’d like PB
to load in the file. There are a number of options:

 0 – Default. Sprite resides in video memory (assuming there is
room).

 #PB_Sprite_Memory – Sprite is loaded into main PC memory
(for SpecialFX).

 #PB_Sprite_Alpha – Sprite is 8 bits grayscale and will be used
by DisplayAlphaSprite() or DisplayShadowSprite().

143

 #PB_Sprite_Texture – Sprite is created with 3D support - useful
for the CreateSprite3D() command.

 #PB_Sprite_AlphaBlending - Sprite is created with per-pixel
alpha-channel support. The image format (PNG/TIFF only for
now) has to support it. #PB_Sprite_Texture also needs to be
specified, and the sprite has to be displayed using
DisplaySprite3D.

The default file type that PB supports is BMP. If you wish to use another
kind of file, you will need to call on the ImagePlugin library. Here are
the most commonly used graphics types, and their calls:

 UseJPEGImageDecoder() – Sets up for allowing JPG/JPEG files.
 UseJPEG2000ImageDecoder() – Sets up for allowing JPG/JPEG

2000 files.
 UsePNGImageDecoder() – Sets up to allow PNG files.
 UseTIFFImageDecoder() – Sets up to allow TIFF files.
 UseTGAImageDecoder() – Sets up to allow TGA files.

After loading the sprite, you will want to draw it to the screen using the
DisplaySprite command. DisplaySprite takes the SpriteNumber and
draws the associated sprite at the specified X, Y coordinates.

DisplaySprite(SpriteNumber, X, Y)

If you specify an invalid SpriteNumber, PB will break out with an error.
So, be safe and check that LoadSprite was successful when it attempted
to load the image. Here is a piece of code that loads and draws up an
image (you can either create a .PNG file called “test.png” in the same
directory that you are running this program, or just use the example
program in the appropriate chapter folder. Alternately, you can use
BMP, but make sure you change the LoadSprite line in the code below):

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite()=0 Or InitKeyboard()=0 Or OpenScreen(640,480,16,"App Title")=0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; include our generic library
XIncludeFile "../libraries/generic.pb"

; We're going to use PNG as our file, so call the plugin
UsePNGImageDecoder()

; Now load up the sprite
Result = LoadSprite(0,"test.png",0)

; make sure it was successful, or end the program

144

If Result = 0
 MessageRequester("Error!","Unable to load test.png",#PB_MessageRequester_Ok)
 End
EndIf

; display the sprite
DisplaySprite(0,200,50)

; put up a little message to the user that we're done
If StartDrawing(ScreenOutput())
 DrawText(0,460,"Press any key to exit")
Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
EndIf

StopDrawing()

; show the output to the users
FlipBuffers()

; wait for a keypress
WaitKey()

; end the program
End

Note that the DisplaySprite command is called outside of the
StartDrawing(…) piece. StartDrawing can be used to draw to Windows,
Printers, Screens, Sprites, etc. It doesn't require the use DirectX, but
you'll need DirectX to draw to screens or Sprites, of course. It’s also
used with the GUI part of PB. For example, to display images on
windows and things like that you’ll use the StartDrawing command. So,
while it may seem strange that you call DisplaySprite outside of the
StartDrawing command, when you take into account that they’re really
two different beasts, it should be more understandable.

Using this method you can load up any supported image type and
display it at any X, Y coordinate you want, but keep in mind that if you
display it at a coordinate beyond the range of your screen resolution,
you won’t see the image. This is because PureBasic will automatically
clip anything outside of the visual field. The term “clip” is used to mean
not drawing anything off the visual field.

Another thing to think about when drawing images is transparency.
Transparency simply means that PB will draw all of the pixels of the
image with the exception of a color (called a Mask) that YOU select by

145

calling the TransparentSpriteColor command. The format of this
command is:

TransparentSpriteColor(SpriteNumber, RGB(RedColor, GreenColor,
BlueColor))

The color value is best set using the RGB command. The default color is
black. So the default mask is black.

The DisplaySprite command does not pay attention to transparency, so
it will draw everything, regardless of color.

In order to use the transparency, you will need to call the
DisplayTransparentSprite command, which is called identically to
DisplaySprite.

Rotating an Image to Make Multiple Frames
One of the things that a lot of games do is to have a 2D graphic that
rotates around its mid-point. For example, let's say that you're making a
2D space game (everyone does!). You could make your player's ship by
drawing it at all the different angles by hand, which is going to be the
cleanest method for your images, but also the most time-consuming. Or
you could draw it facing straight up and then use your graphics program
to rotate each frame and then place the frames together. Or maybe
draw it facing straight up, have PB load it and do all the rotations for
you.

Let’s make a function that uses the last method, but using our main
character, “Migz.” It will require the use of a couple of the 3D
commands, but only because there are no default 2D commands for
rotation in the core PB commands.

Now this method isn't going to work in all situations. If, for example,
you had the same image that either changed sizes real-time or had
different light-sources depending on the angles (and that light-source
was not dynamic), you couldn't use this method. But I've used this for a
number of demos and games without hesitation.

We'll use a combination of RotateSprite3D, DisplaySprite3D, and
GrabSprite commands. There are support commands that we’ll also
need, like SpriteWidth and SpriteHeight.

This will be our most ambitious piece of code thus far, so make sure you
take the time to study it. Also, note that there are more elegant ways of
handling things like this, not mention many varying ways of doing it.
Our method will be quick and useful, but not necessarily elegant.

Here’s the main code piece, we’ll show the procedure in a moment:

146

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitSprite3D() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(640,480,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Make it use 10-deg points, change this number around to see differences,
; but be sure it's equally divisible into 360 or you may see blowups.
; Try 10, 36, 72, 180, 360
Rotations = 36

; setup an array to hold our ship images
Global Dim Migz(Rotations)

; declard our graphics procedure
Declare Rotate_2D_To_Array(ImageToUse,Rotations)

; Use the PNG decoder for image loads.
UsePNGImageDecoder()

; load in the sprite with 3D capability
SpriteID = LoadSprite(#PB_Any,"migz.png",#PB_Sprite_Texture)

; set the appropriate mask so we have transparencies
TransparentSpriteColor(SpriteID,RGB(255,0,255))

; call the library procedure that rotates and copies the images
Rotate_2D_To_Array(SpriteID,Rotations)

; setup a little var for rotations
CurrentAngle = 0

Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ; just show our sprites spinning
 For y = 0 To 10
 For X = 0 To 14
 DisplayTransparentSprite(Migz(CurrentAngle), X * SpriteWidth(SpriteID), 
  Y * SpriteHeight(SpriteID))
 Next
 Next

 ; simple tracking of the array position for visual effect
 CurrentAngle = CurrentAngle + 1
 If CurrentAngle >= Rotations

147

 CurrentAngle = 0
 EndIf

 StartDrawing(ScreenOutput())
 DrawText(0,460,"Press any key To quit")
 StopDrawing()

 FlipBuffers()

 ExamineKeyboard()
Until KeyboardReleased(#PB_Any)

End

Before moving on to the rotation procedure there are a few things we
should look at in the above code.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitSprite3D() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(640,480,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

We have a new addition to our initializations, InitSprite3D. This call
informs PureBasic that we will want to use the 3D command set. If PB
can’t initialize it on your system, then it will cause a system halt. Most
systems these days should support the 3D suite of commands, but there
are still some that do not.

; setup an array to hold our migz images
Global Dim Migz(Rotations)

; declard our graphics procedure
Declare Rotate_2D_To_Array(ImageToUse,Rotations)

We’ve dimensioned our array to hold the plethora of rotations that we’ll
need. Notice that we needed to put the Global keyword in front of the
Dim keyword. This is because we're going to be using the array outside
of its default scope.

Also, we’ve now setup the Declare for the procedure in charge of
rotating our Migz image around.

Now, for loading the sprite:

148

; load in the sprite with 3D capability
SpriteID = LoadSprite(#PB_Any,"migz.png",#PB_Sprite_Texture)

; set the appropriate mask so we have transparencies
TransparentSpriteColor(SpriteID,255,0,255)

In order to load in a sprite with 3D support, we have to pass along the
optional #PB_Sprite_Texture argument, and make sure we set up the
transparency color too. You'll notice that I've used the "#PB_Any" value
here to have PureBasic return a unique sprite identifier, called SpriteID.
Now I just need to be sure to use that variable for each call that
requires it.

Okay, now let’s take a look at the library code that actually rotates the
images and stores them into an array.

;**
; Procedure: Rotate_2D_To_Array(...)
; Author: John Logsdon
; Last Upd: 9/02/2012
; Purpose: Rotates a 2D image and places their
; respective handles into an array
; Args: The image to use, the # of rotations
; Returns: n/a - but does fill the array
; Comments: I grab from -5,-5 to +5, +5 of the 3D
; image because when an image is rotated,
; it changes size accordingly.I know there
; are mathematical ways to properly adjust
; for this, but I'm just using a
; quick-n-dirty method here.
 ;**
Procedure Rotate_2D_To_Array(ImageToUse,Rotations)
 ; find the actual rotation amount
 ; i.e.: 360/36 = 10. So 10-degrees is the rotation distance
 RotationAmount = 360 / Rotations
 ; start our initial angle at 0
 Angle = 0

 ; where to display the object for grabbing
 DisplayX = 50
 DisplayY = 50

 ; get the width and height plus some buffering so we don't have
 ; to call it every iteration of the loop
 Width=SpriteWidth(ImageToUse) + 10
 Height=SpriteHeight(ImageToUse) + 10

 ; Create a 3D sprite
 Sprite3D_ID = CreateSprite3D(#PB_Any,ImageToUse)

149

 ; since we're only going to use this to rotate and place in 2D pieces,
 ; set the quality up
 Sprite3DQuality(1)

 ; run through the rotations
 For i = 0 To Rotations - 1
 ; Set a number in our Migz array
 Migz(i) = i

 ClearScreen(ClearColor)

 ; start up the 3D drawing piece
 Start3D()
 ; rotate the sprite, but then leave back to it's original position
 ; for next call
 RotateSprite3D(Sprite3D_ID,Angle,#PB_Relative)
 ; draw the sprite using 3D
 DisplaySprite3D(Sprite3D_ID,DisplayX,DisplayY)
 Stop3D()
 ; grab the sprite to 2D
 GrabSprite(Migz(i),DisplayX - 5,DisplayY - 5,Width,Height,0)
 ; Update the angle
 Angle = Angle + RotationAmount
 Next
EndProcedure

SpriteWidth and SpriteHeight are used so we know how much of a space
to grab using the GrabSprite command. Note that I add 10 both the
width and height value because a diagonal image is larger than a non-
diagonal one. Here is a visual for that:

See how the image on the right has little bits of it cut off? This is
because the image changes slightly in size as it rotates. To compensate
for this, I just add 5 pixels to all four sides so nothing gets cut off.

; Create a 3D sprite
Sprite3d_ID = CreateSprite3D(#PB_Any,0)

CreateSprite3D makes a 3D location for storing 2D sprites. It’s just a
rectangle that will accept a texture, which is a normal 2D sprite. The
main thing to be aware of is that this will want a square sprite (8x8,

150

16x16, 32x32, 64x64, etc.). You can try to use a non-square sprite, but
not all hardware cards will support it.

; since we're only going to use this to rotate and place in 2D pieces, set the quality up
Sprite3DQuality(1)

What we’re doing here is telling PB that we want the sprite to have
bilinear filtering, which means that the pixels will be averaged together
to give a more realistic look. In actuality this makes the image look a
little blurry, but that makes it look less pixilated. Less pixilated is a good
thing for games, and it also makes for rotations to be more smooth and
clean.

; start up the 3D drawing piece
Start3D()

Just like we have to use StartDrawing to draw up text and standard
primitives, PB asks that we also call the Start3D and Stop3D commands
to let it know when we’re working with 3D.

; rotate sprite, put back to it's original position for next call
RotateSprite3D(Sprite3d_ID,Angle,0)

This is the command that does the actual rotation. It takes the image
that we passed along, rotates it a certain amount, and then tells PB that
the next time it gets called it should reset it back to what it was
originally. We could tell the command to just keep rotating from where
it was, but I don’t like doing that. I don’t like it because it tends to
make the image look less clean than if it uses the original as the axis.

; draw the sprite using 3D
DisplaySprite3D(Sprite3d_ID,DisplayX,DisplayY)

This is just the 3D counterpart to DisplaySprite.

; grab the sprite to 2D
GrabSprite(Migz(i),DisplayX - 5,DisplayY - 5,Width,Height,0)

GrabSprite takes the image from video memory and slaps the handle to
it into the array.

Type all that in and give it a go. You should see a bunch of Migz’s (or
whatever image you choose to use) spinning all over the screen.

151

Writing directly to a sprite
Every time you load in a new sprite, grab a sprite, create a sprite, etc.
you are really creating a sprite buffer. This is just a piece of memory
that holds an image. That’s really all there is to it.

You can manipulate this buffer, drawing to it at will, by setting the
current buffer to be that sprite. For example, let’s take our Migz image
and then draw some lines all over it. Why? Cause it’s fun.

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or OpenScreen(640,480,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Use the PNG decoder for image loads.
UsePNGImageDecoder()

; load in the sprite with 3D capability
SpriteID = LoadSprite(#PB_Any,"Migz.png")

; set the appropriate mask so we have transparencies
TransparentSpriteColor(SpriteID,RGB(255,0,255))

; set the drawing element to be our sprite
StartDrawing(SpriteOutput(SpriteID))
 ; draw a couple of lines on it
 Line(0,0,31,31,RGB(255,255,0))
 Line(0,31,31,-31,RGB(255,255,0))
StopDrawing()

Repeat
 ; clear the screen
 ClearScreen(ClearColor)
 ; show our sprite
 DisplayTransparentSprite(SpriteID,300,200)
 ; put up text for exiting
 StartDrawing(ScreenOutput())
 DrawText(0,460,"Press any key To quit")
 StopDrawing()
 FlipBuffers()
 ExamineKeyboard()
Until KeyboardReleased(#PB_Any)

End

152

The key component here is the StartDrawing line. Here is where we set
the drawing buffer to be our Migz character. So instead of using the full
screen buffer for our drawing, we just use the sprite instead.

There are a ton of reasons for manipulating buffers directly. For
example, what if you wanted to show damage on your ship each time a
bullet hit it? You could draw a dark pixel to the spot that it was hit.
And maybe over time the spot fades back to its original color because
you are doing repairs. You could also inscribe the player’s name on the
hood of a car or maybe allow the player to place specific designs to
customize their character. Again, the number of options here is
limitless, so get used to playing with buffers directly.

153

Chapter 13: Handling Animation

In the previous chapter we talked about sprites and their uses. Now let’s
have some fun with them.

Page Flip Animation
Page flipping is utilized most often in today's games because it's a way
to ensure you're not going to get flicker. The concept is to have a piece
of memory set aside (preferably video memory, for speed reasons) that
is laid out exactly like your primary video memory (or screen buffer).
So, you'd have a primary (front) buffer and a secondary (back) buffer.
The back buffer has a duplicate layout of the front buffer.

The idea is that while your front buffer is displayed to the user, you get
busy drawing on the back buffer. This way you are not drawing anything
to the main screen while the user watches. When you have completed
your drawing you flip the two pages. So, now your front buffer becomes
your back buffer and your back buffer becomes your front buffer. Since
this tells the video card to point to a new place in video memory when
doing its refresh, it's instant.

I’m going to move a ball from one side of the screen to the next,
bouncing it off the edges and such.

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Use the PNG decoder for image loads.
UsePNGImageDecoder()

; load in the sprite
SpriteID = LoadSprite(#PB_Any,"ball.png")

; get the width and height of the sprites
Sprite_Width = SpriteWidth(SpriteID)
Sprite_Height = SpriteHeight(SpriteID)

154

XDir = 1 ; 0=left, 1=right
YDir = 1 ; 0=up, 1=down
Speed = 2 ; how fast do we go (in pixels)

Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ; show our sprite
 DisplaySprite(SpriteID,X,Y)

 ; if we're moving left, subtract speed
 If XDir = 0
 X = X - Speed
 Else
 ; otherwise add speed
 X = X + Speed
 EndIf

 ; if we hit the right edge, start moving left
 If X > #ScreenWidth - Sprite_Width
 XDir = 0
 EndIf
 ; if we hit the left edge, start moving right
 If X < 1
 XDir = 1
 EndIf

 ; if we're moving up, subtract speed
 If YDir = 0
 Y = Y - Speed
 Else
 ; otherwise add speed
 Y = Y + Speed
 EndIf

 ; if we hit the bottom edge, start moving up
 If Y > #ScreenHeight - Sprite_Height
 YDir = 0
 EndIf
 ; if we hit the top edge, start moving down
 If Y < 1
 YDir = 1
 EndIf

 ; put up text for exiting
 StartDrawing(ScreenOutput())
 DrawText(0,460,"Press any key To quit")
 StopDrawing()

 FlipBuffers()

155

 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End

I’ve set up two variables at the very top of the code to assign the
screen’s width and height values. I do this because in most games you
will be gauging how to handle animations based on the screen’s
dimensions. If you hard code these numbers then you’ll need to change
them all throughout your program, which can be quite a hassle. If you
set them as constants, then PB will incorporate them at compile time.
Then you only need to change these values in ONE spot when doing
updates and testing. It’s safer, faster, and is less likely to introduce
bugs in your code upon making such changes.

What makes this example work is that we keep adding the Speed to the
X and Y values for the placement of the ball until we hit a wall.
Depending on which wall we hit, we reverse the addition to subtraction
(or subtraction to addition, as the case may be) for that plane and it
gives the appearance that the ball is bouncing off the walls.

If you get rid of the ClearScreen(…) command you’ll see a bunch of
artifacts all over the screen. This command is important because it will
first clear the back buffer and then draw everything in its updated
position.

For fun let’s add in a Structure and a List that will keep track of a bunch
of bouncing balls. We will create them on the fly in a function,
randomizing their positions and speeds as we go, and then animate
them all over the screen.

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Use the PNG decoder for image loads.
UsePNGImageDecoder()

156

; load in the sprite
SpriteID = LoadSprite(#PB_Any,"ball.png")

; get the width and height of the sprites
Sprite_Width = SpriteWidth(SpriteID)
Sprite_Height = SpriteHeight(SpriteID)

Structure Balls
 X.w ; track the X position of the ball
 Y.w ; track the Y position of the ball
 XDir.b ; track the X direction of the ball (0=left,1=right)
 YDir.b ; track the Y direction of the ball (0=up, 1=down)
 Speed.b ; track the speed of the ball
EndStructure

; setup a list of balls
NewList Ball.Balls()

; create a bunch of instances of balls
For BCounter = 0 To 50
 If AddElement(Ball()) <> 0
 Ball()\X = Random(#ScreenWidth - Sprite_Width)
 Ball()\Y = Random(#ScreenHeight - Sprite_Height)
 Ball()\XDir = Random(1)
 Ball()\YDir = Random(1)
 Ball()\Speed = Random(4) + 1
 Else
 MessageRequester("Error!", "Unable to allocate memory for new element", 
  #PB_MessageRequester_Ok)
 End
 EndIf
Next

Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ForEach Ball()

 ; show our sprite (using transparency)
 DisplayTransparentSprite(SpriteID,Ball()\X,Ball()\Y)

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; First let's work with the X-Axis
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; if we're moving left, subtract speed
 If Ball()\XDir = 0
 Ball()\X = Ball()\X - Ball()\Speed
 Else

157

 ; we must be moving right, add speed
 Ball()\X = Ball()\X + Ball()\Speed
 EndIf

 ; if we hit the right edge, start moving left
 If Ball()\X > #ScreenWidth - Sprite_Width
 Ball()\XDir = 0
 EndIf
 ; if we hit the left edge, start moving right
 If Ball()\X < 1
 Ball()\XDir = 1
 EndIf

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; Now let's work with the Y-Axis
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; if we're moving up, subtract speed
 If Ball()\YDir = 0
 Ball()\Y = Ball()\Y - Ball()\Speed
 Else
 ; we must be moving down, add speed
 Ball()\Y = Ball()\Y + Ball()\Speed
 EndIf

 ; if we hit the bottom edge, start moving up
 If Ball()\Y > #ScreenHeight - Sprite_Height
 Ball()\YDir = 0
 EndIf
 ; if we hit the top edge, start moving down
 If Ball()\Y < 1
 Ball()\YDir = 1
 EndIf
 Next

 ; put up text for exiting
 StartDrawing(ScreenOutput())
 DrawText(0,460,"Press any key To quit")
 StopDrawing()

 FlipBuffers()

 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End

Animating Images
It’s pretty likely that you’ll want to have an image animate in and of
itself. For example, what fun is it to have a character running across

158

the screen without its arms and feet moving about? Or how about a car
that doesn’t have spinning tires?

In addition to moving stuff around the screen, you'll also need to think
about the various frames of the image as it changes. For example, take
the following image in Figure 13.1:

(Figure 13.1)

This is a very basic image that demonstrates what I’m talking about. If
you show these images in a successive display, your mind will perceive
a spinning wheel.

In the following example we take the bouncing ball demo and put in the
spinning ball. You’ll either need to create two image files with the two
circles like above, or you can make your own image file with whatever
animation layout you would like. Here’s the code:

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Use the PNG decoder for image loads.
UsePNGImageDecoder()

; load in the sprite
LoadSprite(0,"ballframe1.png")
LoadSprite(1,"ballframe2.png")

; get the width and height of the sprites
Sprite_Width = SpriteWidth(0)
Sprite_Height = SpriteHeight(0)

Structure Balls
 X.w ; track the X position of the ball
 Y.w ; track the Y position of the ball
 XDir.b ; track the X direction of the ball (0=left,1=right)

159

 YDir.b ; track the Y direction of the ball (0=up, 1=down)
 Speed.b ; track the speed of the ball
 Frame.b ; track the frame we're using in the animation
EndStructure

; setup a list of balls
NewList Ball.Balls()

; create a bunch of instances of balls
For BCounter = 0 To 50
 If AddElement(Ball()) <> 0
 Ball()\X = Random(#ScreenWidth - Sprite_Width)
 Ball()\Y = Random(#ScreenHeight - Sprite_Height)
 Ball()\XDir = Random(1)
 Ball()\YDir = Random(1)
 Ball()\Speed = Random(4) + 1
 Ball()\Frame = Random(1)
 Else
 MessageRequester("Error!", "Unable to allocate memory for new element", 
  #PB_MessageRequester_Ok)
 End
 EndIf
Next

Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ForEach Ball()

 ; show our sprite (using transparency)
 DisplayTransparentSprite(Ball()\Frame,Ball()\X,Ball()\Y)

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; First let's work with the X-Axis
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; if we're moving left, subtract speed
 If Ball()\XDir = 0
 Ball()\X = Ball()\X - Ball()\Speed
 Else
 ; we must be moving right, add speed
 Ball()\X = Ball()\X + Ball()\Speed
 EndIf

 ; if we hit the right edge, start moving left
 If Ball()\X > #ScreenWidth - Sprite_Width
 Ball()\XDir = 0
 EndIf
 ; if we hit the left edge, start moving right
 If Ball()\X < 1
 Ball()\XDir = 1

160

 EndIf

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; Now let's work with the Y-Axis
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; if we're moving up, subtract speed
 If Ball()\YDir = 0
 Ball()\Y = Ball()\Y - Ball()\Speed
 Else
 ; we must be moving down, add speed
 Ball()\Y = Ball()\Y + Ball()\Speed
 EndIf

 ; if we hit the bottom edge, start moving up
 If Ball()\Y > #ScreenHeight - Sprite_Height
 Ball()\YDir = 0
 EndIf
 ; if we hit the top edge, start moving down
 If Ball()\Y < 1
 Ball()\YDir = 1
 EndIf

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; Finally let's update the frame
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ;if we're on Frame 0, move to 1
 If Ball()\Frame = 0
 Ball()\Frame = 1
 Else
 ; otherwise move to 0
 Ball()\Frame = 0
 EndIf
 Next

 ; put up text for exiting
 StartDrawing(ScreenOutput())
 DrawText(0,460,"Press any key To quit")
 StopDrawing()

 FlipBuffers()

 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End

After you’ve run this you may be surprised to see that the images
animate so fast that you can’t even see the animation! A quick way to
fix this so you can see the animation in action is to put the following line
after the FlipBuffers command:

161

Delay(50)

That will slow down the processing enough to allow everything to be
visible. But there is a big problem with this method: it not only slows
down your animation but your entire game!

Animation Timing
So how do you control the speed at which an image animates? I don’t
mean how do you control how fast it moves, but literally how long it is
between one frame of the image and the next. This is a key issue
because you may have many things animating at different rates on your
screen, and you’ll need a way to keep track of them all.

Fortunately, PureBasic provides some timing commands that we can use
to control animation speeds. You’ll need to add a few fields to your
structure in order to make this effective though. Let’s take our Balls
Structure and add to it:

Structure Balls
 X.w ; track the X position of the ball
 Y.w ; track the Y position of the ball
 XDir.b ; track the X direction of the ball (0=left,1=right)
 YDir.b ; track the Y direction of the ball (0=up, 1=down)
 Speed.b ; track the speed of the ball
 Frame.b ; track the frame we're using in the animation
 FrameTimer.b ; time between frame changes?
 LastChanged.l ; last frame change time?
EndStructure

You can use whatever field names you want, of course, but these seem
to convey the point clearly to me so I’ll stick with them.

Next we’ll need to assign a value to the FrameTimer, and we’ll need to
use the ElapsedMilliseconds command to get the current time after each
animated frame. Then we’ll need to include the following two lines when
we’re creating the ball instances:

 Ball()\FrameTimer = Random(100) + 30
 Ball()\LastChanged = ElapsedMilliseconds()

And then alter the section of code that handles the frame changing as
follows:

 ; has sufficient time elapsed to change the frame on this ball?
 If Current_Time > Ball()\LastChanged + Ball()\FrameTimer
 ;if we're on Frame 0, move to 1

162

 If Ball()\Frame = 0
 Ball()\Frame = 1
 Else
 ; otherwise move to 0
 Ball()\Frame = 0
 EndIf
 ; make sure to reset the LastChanged time!
 Ball()\LastChanged = Current_Time
 EndIf

Now, here’s the full source for our example:

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Use the PNG decoder for image loads.
UsePNGImageDecoder()

; load in the sprite
LoadSprite(0,"ballframe1.png")
LoadSprite(1,"ballframe2.png")

; get the width and height of the sprites
Sprite_Width = SpriteWidth(0)
Sprite_Height = SpriteHeight(0)

Structure Balls
 X.w ; track the X position of the ball
 Y.w ; track the Y position of the ball
 XDir.b ; track the X direction of the ball (0=left,1=right)
 YDir.b ; track the Y direction of the ball (0=up, 1=down)
 Speed.b ; track the speed of the ball
 Frame.b ; track the frame we're using in the animation
 FrameTimer.b ; time between frame changes?
 LastChanged.l ; last frame change time?
EndStructure

; setup a list of balls
NewList Ball.Balls()

163

; create a bunch of instances of balls
For BCounter = 0 To 50
 If AddElement(Ball()) <> 0
 Ball()\X = Random(#ScreenWidth - Sprite_Width)
 Ball()\Y = Random(#ScreenHeight - Sprite_Height)
 Ball()\XDir = Random(1)
 Ball()\YDir = Random(1)
 Ball()\Speed = Random(4) + 1
 Ball()\Frame = Random(1)
 Ball()\FrameTimer = Random(100) + 30
 Ball()\LastChanged = ElapsedMilliseconds()
 Else
 MessageRequester("Error!", "Unable to allocate memory for new element", 
  #PB_MessageRequester_Ok)
 End
 EndIf
Next

Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ; get the current time for processing
 Current_Time = ElapsedMilliseconds()

 ForEach Ball()
 ; show our sprite (using transparency)
 DisplayTransparentSprite(Ball()\Frame,Ball()\X,Ball()\Y)

 ;;;;; First let's work with the X-Axis ;;;;;
 ; if we're moving left, subtract speed
 If Ball()\XDir = 0
 Ball()\X = Ball()\X - Ball()\Speed
 Else
 ; we must be moving right, add speed
 Ball()\X = Ball()\X + Ball()\Speed
 EndIf

 ; if we hit the right edge, start moving left
 If Ball()\X > #ScreenWidth - Sprite_Width
 Ball()\XDir = 0
 EndIf
 ; if we hit the left edge, start moving right
 If Ball()\X < 1
 Ball()\XDir = 1
 EndIf

 ;;;;; Now let's work with the Y-Axis ;;;;
 ; if we're moving up, subtract speed

164

 If Ball()\YDir = 0
 Ball()\Y = Ball()\Y - Ball()\Speed
 Else
 ; we must be moving down, add speed
 Ball()\Y = Ball()\Y + Ball()\Speed
 EndIf

 ; if we hit the bottom edge, start moving up
 If Ball()\Y > #ScreenHeight - Sprite_Height
 Ball()\YDir = 0
 EndIf
 ; if we hit the top edge, start moving down
 If Ball()\Y < 1
 Ball()\YDir = 1
 EndIf

 ;;;;; Finally let's update the frame ;;;;;;
 ; has sufficient time elapsed to change the frame on this ball?
 If Current_Time > Ball()\LastChanged + Ball()\FrameTimer
 ;if we're on Frame 0, move to 1
 If Ball()\Frame = 0
 Ball()\Frame = 1
 Else
 ; otherwise move to 0
 Ball()\Frame = 0
 EndIf
 ; make sure to reset the LastChanged time!
 Ball()\LastChanged = Current_Time
 EndIf
 Next

 ; put up text for exiting
 StartDrawing(ScreenOutput())
 DrawText(0,460,"Press any key To quit")
 StopDrawing()

 FlipBuffers()

 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End

If you make these changes, you’ll notice some of the balls spinning
faster than others. This is exactly the kind of thing you’ll need for your
games!

165

Chapter 14: Collision Detection

This particular topic has been the nemesis of many a hobbyist game
programmer. The concept of determining when two objects overlap
seems to be, on the surface, a simple thing to check. In practice,
though, this can be quite a difficult accomplishment.

Bounding Box Collisions
The problem arises in that a graphical object is a square. Sure, it may
look like a circle, but computers don’t display images as circles…rather
they display them as squares. Take another look at the balls image, as
an example:

(Figure 14.1)

See how you can separate those two images into squares? They touch
only on the left-hand side, but when you go to display the image,
PureBasic is really drawing out a square. It’s just ignoring the black
pixels because the default mask is black (assuming you’re using the
DisplayTransparentSprite command).

(Figure 14.2)

Here we have two circles that are not touching, thus there is no
collision. However, all we have to do is overlap the two black edges and
we'll have a collision. This is because of how computers handle images.
They are squares regardless of the shape the non-black (or mask color)
pixels are. Consider:

(Figure 14.3)

166

Those two images are overlapping since the squares that contain them
are touching. This is why in some games you’ll see an explosion before
a missile hits a ship, for example.

The following two graphics show something else interesting in regards to
this method of collision detection. The first graphic shows a cheesy little
rocket with an even cheesier little bullet sitting off to the right of it.
There is no collision here, of course:

(Figure 14.4)

However, I’ll now move the bullet to sit right next to the rocket:

(Figure 14.5)

It’s not actually hitting the rocket, but since the two boxes overlap, PB
will respond that a collision has taken place.

This type of collision detection is known as the “bounding box” method.
It’s used because it’s fast. It’s in no way accurate, but it is fast. And
there are times where this method is the best choice, such as if you
have a game made of blocks that smack into each other or something.

The SpriteCollision command is used to check if two images are
overlapping on their respective bounding-boxes. Here is the format of
this command:

SpriteCollision (Sprite1,X,Y,Sprite2,X,Y)

Taking the bouncing ball example again, we can run through the Balls
structure and check each element for overlap, as follows:

 ; first let's save the current instance of BALL()
 CurrentBall = Ball()
 ; then let's store the X & Y values for the current ball
 CurrentBallX = Ball()\X
 CurrentBallY = Ball()\Y

 ; run through the list of balls
 ForEach Ball()
 ; make sure we're not on the current ball
 If Ball() <> CurrentBall

167

 ; do a bounding box collision check
 If SpriteCollision(SpriteID,Ball()\X,Ball()\Y,SpriteID, 
  CurrentBallX,CurrentBallY)
 ; we have an overlap, so add one to our variable
 Hits = Hits + 1
 EndIf
 EndIf
 Next
 ; set the Ball() pointer back to the current ball
 ChangeCurrentElement(Ball(),CurrentBall)

You’ll want to take note that we are using a ForEach within another
ForEach, and that both are using the same structure. So be sure to save
the current position and then reset that position before ending the
outside loop. If you don’t, things will get very odd.

Now each time the images overlap, you’ll see the collision counter move
up. Keep in mind that as the images pass over each other they will
continue to increment until they are no longer overlapping. Here’s the
full code:

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Use the PNG decoder for image loads.
UsePNGImageDecoder()

; load in the sprite
SpriteID = LoadSprite(#PB_Any,"ball.png")

; get the width and height of the sprites
Sprite_Width = SpriteWidth(SpriteID)
Sprite_Height = SpriteHeight(SpriteID)

Structure Balls
 X.w ; track the X position of the ball
 Y.w ; track the Y position of the ball
 XDir.b ; track the X direction of the ball (0=left,1=right)

168

 YDir.b ; track the Y direction of the ball (0=up, 1=down)
 Speed.b ; track the speed of the ball
EndStructure

; setup a list of balls
NewList Ball.Balls()

; create a bunch of instances of balls
For BCounter = 0 To 10
 If AddElement(Ball()) <> 0
 Ball()\X = Random(#ScreenWidth - Sprite_Width)
 Ball()\Y = Random(#ScreenHeight - Sprite_Height)
 Ball()\XDir = Random(1)
 Ball()\YDir = Random(1)
 Ball()\Speed = Random(2) + 1
 Else
 MessageRequester("Error!", "Unable to allocate memory for new element", 
  #PB_MessageRequester_Ok)
 End
 EndIf
Next

Hits.w = 0

Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ForEach Ball()

 ; show our sprite (using transparency)
 DisplayTransparentSprite(SpriteID,Ball()\X,Ball()\Y)

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; First let's work with the X-Axis
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; if we're moving left, subtract speed
 If Ball()\XDir = 0
 Ball()\X = Ball()\X - Ball()\Speed
 Else
 ; we must be moving right, add speed
 Ball()\X = Ball()\X + Ball()\Speed
 EndIf

 ; if we hit the right edge, start moving left
 If Ball()\X > #ScreenWidth - Sprite_Width
 Ball()\XDir = 0
 EndIf
 ; if we hit the left edge, start moving right
 If Ball()\X < 1

169

 Ball()\XDir = 1

 EndIf

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; Now let's work with the Y-Axis
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; if we're moving up, subtract speed
 If Ball()\YDir = 0
 Ball()\Y = Ball()\Y - Ball()\Speed
 Else
 ; we must be moving down, add speed
 Ball()\Y = Ball()\Y + Ball()\Speed
 EndIf

 ; if we hit the bottom edge, start moving up
 If Ball()\Y > #ScreenHeight - Sprite_Height
 Ball()\YDir = 0
 EndIf
 ; if we hit the top edge, start moving down
 If Ball()\Y < 1
 Ball()\YDir = 1
 EndIf

 ; first let's save the current instance of BALL()
 CurrentBall = Ball()
 ; then let's store the X & Y values for the current ball
 CurrentBallX = Ball()\X
 CurrentBallY = Ball()\Y

 ; run through the list of balls
 ForEach Ball()
 ; make sure we're not on the current ball
 If Ball() <> CurrentBall
 ; do a bounding box collision check
 If SpriteCollision(SpriteID,Ball()\X,Ball()\Y,SpriteID, 
  CurrentBallX,CurrentBallY)
 ; we have an overlap, so add one to our variable
 Hits = Hits + 1
 EndIf
 EndIf
 Next
 ; set the Ball() pointer back to the current ball
 ChangeCurrentElement(Ball(),CurrentBall)
 Next

 ; put up text for exiting
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Hits: " + Str(Hits))
 DrawText(0,460,"Press any key To quit")
 StopDrawing()

170

 FlipBuffers()

 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End

Pixel-Perfect Collision Detection
To get an accurate collision, you must use a more accurate method of
detection. The benefit is obvious, no more hits happening that don’t
really “hit” the image. The drawback is that PureBasic will have to
check each non-transparent pixel to see if the pixel overlaps with a pixel
of another image, but it needs to first check each pixel to see if it’s even
transparent! This can slow things down a lot! Fortunately PB first
checks to see if the images even overlap before doing this, so there
aren’t any unnecessary checks. This is a great bonus because if you
were coding this in, say, C or ActionScript, you would have to do this
check on your own first. Not that it's incredibly difficult, but it's just cool
that PB handles it for you!

What we want is a collision to be triggered only when the non-
transparent pixels actually touch, right? Right! So, the following
graphic would demonstrate a collision we’d be happy with:

(Figure 14.6)

That little bullet is actually touching the rocket now! I’ve got great news
for you too…it’s easy to accomplish this in PB. Just use the
SpritePixelCollision command. It’s called exactly the same as
SpriteCollision, so if you just change SpriteCollision to
SpritePixelCollision you’ll be all set.

For fun, let’s take our ball example and make it so there are only four
balls on the screen. When two of them hit on a pixel-perfect check, we’ll
pause to show them and then reset the screen and go again. Also, we’ll
use red, green, blue, and yellow for our colors to track which ones have
collided the most.

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen

171

If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Use the PNG decoder for image loads.
UsePNGImageDecoder()

; load in the sprites
LoadSprite(0,"ball_blue.png")
LoadSprite(1,"ball_red.png")
LoadSprite(2,"ball_green.png")
LoadSprite(3,"ball_yellow.png")

; get the width and height of the sprites
Sprite_Width = SpriteWidth(0)
Sprite_Height = SpriteHeight(0)

Structure Balls
 Color.b ; 0=blue,1=red,2=green,3=yellow
 X.w ; track the X position of the ball
 Y.w ; track the Y position of the ball
 XDir.b ; track the X direction of the ball (0=left,1=right)
 YDir.b ; track the Y direction of the ball (0=up, 1=down)
 Speed.b ; track the speed of the ball
EndStructure

; setup a list of balls
NewList Ball.Balls()

; create a bunch of instances of balls
For BCounter = 0 To 3
 If AddElement(Ball()) <> 0
 Ball()\Color = BCounter
 Ball()\X = Random(#ScreenWidth - Sprite_Width)
 Ball()\Y = Random(#ScreenHeight - Sprite_Height)
 Ball()\XDir = Random(1)
 Ball()\YDir = Random(1)
 Ball()\Speed = 3
 Else
 MessageRequester("Error!", "Unable to allocate memory for new element", 
  #PB_MessageRequester_Ok)
 End
 EndIf
Next

; set up some variable to track hits

172

Hit.b = 0
Blue.w = 0
Red.w = 0
Green.w = 0
Yellow.w = 0

Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ForEach Ball()
 ;;;;; First let's work with the X-Axis ;;;;;
 ; if we're moving left, subtract speed
 If Ball()\XDir = 0
 Ball()\X = Ball()\X - Ball()\Speed
 Else
 ; we must be moving right, add speed
 Ball()\X = Ball()\X + Ball()\Speed
 EndIf

 ; if we hit the right edge, start moving left
 If Ball()\X > #ScreenWidth - Sprite_Width
 Ball()\XDir = 0
 EndIf
 ; if we hit the left edge, start moving right
 If Ball()\X < 1
 Ball()\XDir = 1
 EndIf

 ;;;;; Now let's work with the X-Axis ;;;;;
 ; if we're moving up, subtract speed
 If Ball()\YDir = 0
 Ball()\Y = Ball()\Y - Ball()\Speed
 Else
 ; we must be moving down, add speed
 Ball()\Y = Ball()\Y + Ball()\Speed
 EndIf

 ; if we hit the bottom edge, start moving up
 If Ball()\Y > #ScreenHeight - Sprite_Height
 Ball()\YDir = 0
 EndIf
 ; if we hit the top edge, start moving down
 If Ball()\Y < 1
 Ball()\YDir = 1
 EndIf

 ; first let's save the current instance of BALL()
 CurrentBall = Ball()
 ; then let's store the color, and X & Y values for the current ball
 CurrentBallC = Ball()\Color

173

 CurrentBallX = Ball()\X
 CurrentBallY = Ball()\Y

 ; run through the list of balls
 ForEach Ball()
 ; make sure we're not on the current ball
 If Ball() <> CurrentBall
 ; do a pixel-perfect collision check
 If SpritePixelCollision(Ball()\Color,Ball()\X,Ball()\Y, 
  CurrentBallC,CurrentBallX,CurrentBallY)
 ; see which ones need adding to, and add to them!
 Select Ball()\Color
 Case 0
 Blue = Blue + 1
 Case 1
 Red = Red + 1
 Case 2
 Green = Green + 1
 Case 3
 Yellow = Yellow + 1
 EndSelect
 Select CurrentBallC
 Case 0
 Blue = Blue + 1
 Case 1
 Red = Red + 1
 Case 2
 Green = Green + 1
 Case 3
 Yellow = Yellow + 1
 EndSelect
 ; set a flag to say we've had a collision
 Hit = 1
 ; break out of this loop
 Break
 EndIf
 EndIf
 Next
 ChangeCurrentElement(Ball(),CurrentBall)

 ; show our sprite (using transparency)
 DisplayTransparentSprite(Ball()\Color,Ball()\X,Ball()\Y)
 Next

 ; put up text for exiting
 StartDrawing(ScreenOutput())
 BackColor(RGB(0,0,0))
 FrontColor(RGB(0,0,255))
 DrawText(0,0, "Blue: " + Str(Blue))

 FrontColor(RGB(255,0,0))

174

 DrawText(100,0,"Red: " + Str(Red))

 FrontColor(RGB(0,255,0))
 DrawText(200,0,"Green: " + Str(Green))

 FrontColor(RGB(255,255,0))
 DrawText(300,0,"Yellow: " + Str(Yellow))

 FrontColor(RGB(255,0,255))
 DrawText(0,460,"Press any key To quit")
 StopDrawing()

 FlipBuffers()

 ; if we had a hit, delay to show the hit and then reset everything
 If Hit = 1
 Delay(500)
 ForEach Ball()
 Ball()\X = Random(#ScreenWidth - Sprite_Width)
 Ball()\Y = Random(#ScreenHeight - Sprite_Height)
 Ball()\XDir = Random(1)
 Ball()\YDir = Random(1)
 Next
 ; be sure to reset the hit flag!
 Hit = 0
 EndIf

 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End

The important parts in this program are that we’re loading in four
different balls and assigning them to the Balls structure; we’re using
counters (one per color) to keep track of which colors have hit; we’ve
instituted a Hit flag to let us know when to pause and reset; we’re now
using the SpritePixelCollision command for checks; and we’ve moved
the DisplayTransparentSprite command to the bottom of the loop so we
can see the collisions as they happen.

You may see a point where two of the balls are said to be colliding, but
to your eye they’re just a little bit apart. This is due color-smoothing
(also known as antialiasing). To make circles and lines look less jagged,
paint programs use dimmer and dimmer colors on the edges until they
fade out. Because of this, you may have a situation where two of these
colors overlap and cause collision. Since these colors aren’t exactly black
(or whatever your mask color is) the system will register a collision.
Even having an RGB value of 0,1,0 would not be black and would thus
be considered collision-worthy.

175

Chapter 15: Handling Input

There are a number of devices that your players can use with your
game, but you have control of which ones you’ll support.

Using the Keyboard
When moving a ship around, firing, etc., you'll want to use a keyboard
routine that keeps track of when a key is held down. While you can
certainly use the KeyboardInkey command for checking on one-time hit
keys such as Escape, you'll need something a little more robust for real-
time stuff.

This is where the KeyboardPushed and KeyboardReleased commands
come in. All these function do is return a TRUE or FALSE response when
asked if a particular key is being held down or released. In order for you
to send it a particular key to check, you need to know the key’s
scancode. This is a code that the computer recognizes the key by.
Generally what I do is find the default PB constant (which can be found
in the KeyboardPushed command Help area in the default PureBasic
IDE) and use it as my argument.

The following code checks to see if either the left or right arrow has
been hit. If so, it displays a value accordingly:

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard, mouse, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Keep going until the user hits ESCAPE
Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 KeyBeingHit.s = "None"
 If ExamineKeyboard()
 If KeyboardPushed(#PB_Key_Left)
 KeyBeingHit.s = "Left Arrow"
 EndIf

176

 If KeyboardPushed(#PB_Key_Right)
 KeyBeingHit.s = "Right Arrow"
 EndIf
 EndIf

 ; put up text for information
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Use the Left and Right arrows!")
 DrawText(0,200,"Key = " + KeyBeingHit.s)
 DrawText(0,460,"Press ESCAPE key To quit")
 StopDrawing()

 FlipBuffers()

Until KeyboardReleased(#PB_Key_Escape)

End

For each check, we need to first examine our keyboard:

 If ExamineKeyboard()

If that responds that something has happened, then we can check the
keys accordingly:

 If KeyboardPushed(#PB_Key_Left)
 KeyBeingHit.s = "Left Arrow"
 EndIf

 If KeyboardPushed(#PB_Key_Right)
 KeyBeingHit.s = "Right Arrow"
 EndIf

As you can see, I just pass in the scan codes for the left and right arrow
keys and set the variable as needed.

You can replace these #PB values with any in the scan code list and
change the way this program functions.

KeyboardPushed has no delays associated to it, so you will have an
immediate response to your key presses.

Using the Mouse
The next device to touch on is the mouse. There are a number of
different commands that can be used with the mouse, but the mouse
command set itself is not daunting.

177

Our primary concerns are to examine the state of the mouse, see if
there is any movement, where our mouse cursor is on the screen, what
buttons have been pressed/released, and whether or not the mouse
wheel (if the user has one) has been used. Fortunately, PB has all of
these commands tidied up for us!

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard, mouse, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or InitMouse() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

LastClicked.s = "None"
HeldDown.s = "None"

; load in the sprite
LoadSprite(0,"mouse.bmp")

MouseLocate(320,240)

; Keep going until the user hits a key
Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 If ExamineMouse()
 X = MouseX()
 Y = MouseY()
 X_Movement = MouseDeltaX()
 If X_Movement < 0
 X_MouseMovement.s = "Left"
 ElseIf X_Movement > 0
 X_MouseMovement.s = "Right"
 Else
 X_MouseMovement.s = ""
 EndIf

 Y_Movement = MouseDeltaY()
 If Y_Movement < 0
 Y_MouseMovement.s = "Up"
 ElseIf Y_Movement > 0
 Y_MouseMovement.s = "Down"
 Else

178

 Y_MouseMovement.s = ""
 EndIf

 Wheel_Movement = MouseWheel()
 If Wheel_Movement < 0
 Wheel_MouseMovement.s = "Down"
 ElseIf Wheel_Movement > 0
 Wheel_MouseMovement.s = "Up"
 Else
 Wheel_MouseMovement.s = ""
 EndIf
 MB_Data.s = ""
 For MButton = 1 To 3
 If MouseButton(MButton)
 If MB_Data.s = ""
 MB_Data.s = Str(MButton)
 Else
 MB_Data.s = MB_Data.s + ", " + Str(MButton)
 EndIf
 EndIf
 Next
 EndIf

 ; show our mouse
 DisplaySprite(0,X,Y)

 ; put up text for information
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Current Mouse Position: " + Str(X) + "," + Str(Y))
 DrawText(0,20,"X Movement = " + X_MouseMovement.s + 
  ", Distance = " + Str(X_Movement))
 DrawText(0,40,"Y Movement = " + Y_MouseMovement.s + 
  ", Distance = " + Str(Y_Movement))
 DrawText(0,60,"Wheel Movement = " + Wheel_MouseMovement.s + 
  ", Distance = " + Str(Wheel_Movement))
 DrawText(0,80,"Buttons Pressed = " + MB_Data.s)
 DrawText(0,460,"Press any key To quit")
 StopDrawing()

 FlipBuffers()

 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End

Obviously we must first use the InitMouse command at the top of our
program so as to allow PB to set us up for mouse usage, or tell us we
can’t use it.

179

As with most of the commands in PureBasic, the first thing we call to
check on status is Examine.

 If ExamineMouse()

In this case we’ll be calling the ExamineMouse command. This will check
the status of the mouse, see if there were any updates since the last
call, and prepare us for utilizing those updates.

Next we will want to keep track of the X and Y coordinates of the
mouse:

 X = MouseX()
 Y = MouseY()

Both MouseX and MouseY will return a pixel position value for the
mouse’s hotspot, which is usually the tip of the mouse pointer.

Now we check to see if the mouse has moved since our last inspection:

 X_Movement = MouseDeltaX()
 If X_Movement < 0
 X_MouseMovement.s = "Left"
 Else
 If X_Movement > 0
 X_MouseMovement.s = "Right"
 Else
 X_MouseMovement.s = ""
 EndIf
 EndIf

MouseDeltaX will return a negative if the mouse moved left, a 0 if no
movement on the X-axis, and a positive if the mouse was moved to the
right. MouseDeltaY does the same thing, but for the Y-Axis. Negative =
Moved up, 0 = Not moved, Positive = Moved down.

To check the movement of the wheel, we’ll use the following:

 Wheel_Movement = MouseWheel()
 If Wheel_Movement < 0
 Wheel_MouseMovement.s = "Down"
 Else
 If Wheel_Movement > 0
 Wheel_MouseMovement.s = "Up"
 Else
 Wheel_MouseMovement.s = ""

180

 EndIf
 EndIf

The MouseWheel command acts similarly to MouseDeltaY, but the values
are reversed. Negative = Moved down, 0 = Not Moved, Positive =
Moved up.

Now let’s check the buttons:

 MB_Data.s = ""
 For MButton = 1 To 3
 If MouseButton(MButton)
 If MB_Data.s = ""
 MB_Data.s = Str(MButton)
 Else
 MB_Data.s = MB_Data.s + ", " + Str(MButton)
 EndIf
 EndIf
 Next

Notice here that I’m running through and checking only three buttons.
Some mice have more than three, so you may want to account for that.
I’m just doing a simple For…Next loop and calling MouseButton on each
value (1…2…3). If the value is non-zero, we have a click! If it is zero,
then we don’t.

Displaying a Custom Mouse Cursor
When you go from using the PureBasic IDE window for your game to
using the Full-Screen, you’ll soon see that your mouse image is no
longer visible. You can still keep track of the mouse position and click,
but there’s no image the user can reference for position.

The problem is that where Windows has the mouse functionality built in
for displaying, saving the background and restoring the background...PB
does not. See, where the mouse cursor appears to be a graphic image
that magically moves over the background, there's a lot more going on
underneath the hood.

If you were to draw a graphic image and move it around without first
saving what's under that image (or better, just redrawing what's behind
it), you'd get a bunch of "chunks" ripped out of your background. So,
somehow we have to save the data directly behind the mouse and
redisplay that before we redraw the mouse in its new position.

So how do you do it then? It's easy! You use page-flip animation. Draw
all of the images each rendering cycle and just treat the mouse like any
other image. You may still want to keep track of your old positions so

181

you can see if the mouse has even moved, but that's simply a case of
using the MouseX and MouseY commands.

In our above example, I have already included the mouse pointer
graphic. Here is the code piece that loads it in (look at the top of the
source code):

; load in the sprite
MouseImageID = LoadSprite(#PB_Any,"mouse.bmp")

And then after all the mouse checks are completed, here is what to do
to draw the mouse image:

 ; show our mouse
 DisplaySprite(MouseImageID,X,Y)

That’s it. What that will do is update your screen each frame with the
mouse. You probably want this to be the last DisplaySprite command
called in your game loop to be sure it stays on top of all the other
images.

If you want to change the image used as the mouse cursor, it’s a snap.
Since the mouse is basically being portrayed like any other image, all
you have to do is change the image that you send to DisplaySprite. So
whatever image you use, regardless of its size, color, orientation, etc.,
will be drawn here. This is also cool because if you keep track of the
frame as we did in the Animation section, you can have a neat animated
mouse cursor.

Using the Joystick
As with the other input devices, there are a number of joystick
commands that can be used. First, of course, is the InitJoystick
command. We don’t want to go messing about with the joystick until
we’re sure that PureBasic is able to locate it.

To keep with our previous examples, let’s create a program that keeps
track of all our movements and button clicks:

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard, joystick, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or InitJoystick() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 

182

  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

LastButton.s = "None"
OtherButton.s = "None"

; Keep going until the user hits a key
Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 Button.s = ""
 If ExamineJoystick(0)
 ; check to see if there has been any movement on X
 X_Movement = JoystickAxisX(0)
 If X_Movement < 0
 X_JoystickMovement.s = "Left"
 Else
 If X_Movement > 0
 X_JoystickMovement.s = "Right"
 Else
 X_JoystickMovement.s = ""
 EndIf
 EndIf

 ; check to see if there has been any movement on Y
 Y_Movement = JoystickAxisY(0)
 If Y_Movement < 0
 Y_JoystickMovement.s = "Up"
 Else
 If Y_Movement > 0
 Y_JoystickMovement.s = "Down"
 Else
 Y_JoystickMovement.s = ""
 EndIf
 EndIf

 ; check to see if any of the buttons have been pressed
 For Buttons = 1 To 10
 If JoystickButton(0,Buttons)
 If Button.s = ""
 Button.s = Str(Buttons)
 Else
 Button.s = Button.s + ", " + Str(Buttons)
 EndIf
 EndIf
 Next

183

 EndIf

 ; put up text for exiting
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Buttons Pressed: " + Button.s)
 DrawText(0,20,"X Movement = " + X_JoystickMovement.s)
 DrawText(0,40,"Y Movement = " + Y_JoystickMovement.s)
 DrawText(0,460,"Press any key To quit")
 StopDrawing()

 FlipBuffers()

 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End

Again, the first thing to check during each iteration of our main loop is if
there has been any joystick activity at all:

 If ExamineJoystick()

If there has been, then we process the various options. There are few
options to check on the Joystick: X, Y movement and button presses.
That’s it!

 ; check to see if there has been any movement on X
 X_Movement = JoystickAxisX()
 If X_Movement < 0
 X_JoystickMovement.s = "Left"
 Else
 If X_Movement > 0
 X_JoystickMovement.s = "Right"
 Else
 X_JoystickMovement.s = ""
 EndIf
 EndIf

Unlike our mouse checks, the JoystickAxisX and JoystickAxisY will
provide predefined values to let us know what direction, if any, the
joystick has been moved since the last check. For JoystickAxisX the
values are: -1 = Moved left, 0 = Not moved, 1 = Moved right. For
JoystickAxisY the values are: -1 = Moved up, 0 = Not moved, 1 =
Moved down. Simple enough, eh?

Now we check on our buttons:

184

 ; check to see if any of the buttons have been pressed
 For Buttons = 1 To 3
 If JoystickButton(Buttons)
 If Button.s = ""
 Button.s = Str(Buttons)
 Else
 Button.s = Button.s + ", " + Str(Buttons)
 EndIf
 EndIf
 Next

Just like in the mouse example, I’m just checking for three of the
joystick buttons here. By calling JoystickButton with the associated
button to check, PB will respond if we have had a click or not. The
PureBasic documentation states it can handle standard joysticks that
have up to eight buttons.

If you’d like to expand this joystick demo a little bit, see if you can add
in the mouse image and move it around with the joystick. It’s a
relatively simple task, but there is one primary thing you’ll have to
watch out for: there is no way to know where the X/Y position of the
joystick is, because there’s no such thing. So you’ll have to somehow
add and subtract to manually keep track of the two positions. Now go to
it! 

185

Chapter 16: Sounds and Music

What kind of game has no explosions, weird sounds, ambience, or a
soundtrack? A boring one, if you ask me. You have to have sounds!

But there are a number of things to think about when incorporating
sounds and music. First off, it would be pretty lame to have one sound
cut off as soon as another one plays. Secondly, if all the sounds are so
loud that they’re basically bleeding together, that’s no good. Also,
shouldn’t the user have the ability to turn stuff down or off altogether?
We’ll get into these issues in this chapter.

Loading Sounds
The first thing you’ll need to do when working with sounds is to initialize
the sound environment. Just as you have done with the keyboard,
mouse, joystick, etc., PureBasic requires that you first initialize the
sound system. This ensures that your system is ready to play all the
sounds you need it to. As with all the other initialization commands, you
simply call the InitSound command to accomplish this. If the command
returns a NON-ZERO value then you’re all set. Otherwise, you should
slap up a message and exit the program gracefully.

After the system is prepared to play sounds, you’ll need a sound to load
in. In our sample directory for this chapter, and under the “sounds”
directory from there, I have placed a file called “explosion1.wav” for our
use.

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard, sound, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or InitSound() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

; Load in our .WAV file
SoundID = LoadSound(#PB_Any,"sounds/explosion1.wav")

; if the file loaded okay...
If SoundID
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Playing an explosion sound...This program will exit 
  automatically.")
 StopDrawing()
 FlipBuffers()

186

 ; play the sound
 PlaySound(SoundID)
Else
 MessageRequester("Error!", "Unable to load sound file",
#PB_MessageRequester_Ok)
 End
EndIf

; give a short delay so the sound can finish
Delay(5000)
End

It’s important to note that with this command (and all file-loading
commands) you must include the appropriate path to the files you’re
attempting to load in. If you neglect to do this, PB will respond with a
runtime error.

At the time of this writing, the only industry standard sound types
supported are WAV, FLAC, OGG, by using a sound plug-in. As other
types are supported, the simple inclusion of the plug-in for the new type
will allow you to load and manipulate the sound. I have found that OGG
files are very clean audio files that are substantially smaller in size than
WAV and it’s a royalty-free format. Most people use WAV files for quick
sounds (explosions, gunfire, engine sounds, button clicks, etc.) and
reserve OGG for in-game music.

In our above example, we load in a WAV file and then play it.

; Load in our .WAV file
SoundID = LoadSound(#PB_Any,"sounds/explosion1.wav")

This piece does the actual loading of the file. Note that the first
parameter passed to the procedure is the numerical identifier we will be
using for this sound. As with most PureBasic procedures, you can use
the #PB_Any constant to have PB assign a valid numeric value. Then
you can verify that the value loaded into SoundPointer is valid, or non-
zero, before continuing on. Keeping with

 ; play the sound
 PlaySound(SoundID)

Now we simply play the sound. Assuming the sound loaded properly,
you should hear an explosion when PB processes this command. There
are a couple of options you have when using PlaySound. Firstly, if you
want to play the sound only once, you may either call the command as
shown above, or you can specify the optional Mode to use when playing.

187

 ; play the sound
 PlaySound(SoundID,0)

This will act identically to the above snippet of code. However, if you
want to have the explosion play over and over again, you would use a 1
(or use #PB_Sound_Loop) as the Mode, as follows:

 ; play the sound
 PlaySound(SoundID,1)

Now our explosion will loop!

Another option is to play the sound in multichannel mode. Instead of
stopping the sound that was just played, multichannel will use the same
sound a play it on a different channel. This allows us to play the same
sound on multiple channels at once. We could then use SoundVolume,
SoundFrequency, SoundPan, and StopSound on the specific channel that
the sound is playing on.

How do we get that channel, though? When setting up the PlaySound, it
will return a result. If we pass along the #PB_Sound_MultiChannel flag
during the call to play, the resultant value that is returned will be the
channel for that sound.

 ; play the sound
 SoundChannelID = PlaySound(SoundID,#PB_Sound_MultiChannel)

Manipulating Sounds
There are a few commands that you can use to help make your sounds
a bit more realistic in games. They are SoundVolume, SoundPan, and
SoundFrequency.

Using these creatively, you can give your player the feeling that there
are explosions far in the distance. Or maybe if they’ve been hit, they’ll
know they were shot from off to their left because you’ve panned the
sound fully to the left speaker. Plus, since sounds farther away tend to
have a deeper pitch than sounds close by, you can control the pitch of
the sounds accordingly.

SoundVolume can be anywhere from 0 to 100—the higher the value, the
louder the sound.

188

SoundPan is used to move the sound from one speaker to another. If
you have a value of 0, which is the default, the sound will be played in
the center, or equally loud on both speakers. If you go negative, you
can have the sound play more loudly on the left side and more quietly
on the right, up to a maximum of –100. The opposite is true for using
positive numbers, up to 100.

SoundFrequency goes from 1000hz to 100000hz. Drop it down to
10000hz and you’ll hear a very deep and slow sound. And, depending
on the hertz amount you saved your sound, if you pop it up to 80000hz
you’ll hear a really high-pitched, quick sound.

Here is a little demo that allows the manipulation of an explosion sound.
You may replace the WAV filename with any file name that you wish,
just make sure it’s in the appropriate directory.

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard, sound, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or InitSound() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Load in our .WAV file
SoundID = LoadSound(#PB_Any,"sounds/explosion1.wav")

; if our file loaded okay...
If SoundID
 ; initialize the Volume to half and set
 Sound1Volume = 50
 SoundVolume(SoundID,Sound1Volume)

 ; initialize the pan to center and set
 Sound1Pan = 0
 SoundPan(SoundID,Sound1Pan)

 ; initialize the pitch to highest and set
 Sound1Frequency = 44000
 SoundFrequency(SoundID,Sound1Pitch)
Else
 MessageRequester("Error!", "Unable to load sound file", 
  #PB_MessageRequester_Ok)
 End

189

EndIf

; Keep going until the user hits ESCAPE
Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ExamineKeyboard()
 ; if the user hits the space bar, play
 ; the sound
 If KeyboardPushed(#PB_Key_Space)
 PlaySound(SoundID)
 EndIf

 ; if the user hits the up arrow, increase
 ; the volume
 If KeyboardPushed(#PB_Key_Up)
 Sound1Volume = Sound1Volume + 1
 If Sound1Volume > 100
 Sound1Volume = 100
 EndIf
 SoundVolume(SoundID,Sound1Volume)
 EndIf

 ; if the user hits the down arrow, decrease
 ; the volume
 If KeyboardPushed(#PB_Key_Down)
 Sound1Volume = Sound1Volume - 1
 If Sound1Volume < 0
 Sound1Volume = 0
 EndIf
 SoundVolume(SoundID,Sound1Volume)
 EndIf

 ; if the user hits the right arrow,
 ; move the pan a bit to the right
 If KeyboardPushed(#PB_Key_Right)
 Sound1Pan = Sound1Pan + 1
 If Sound1Pan > 100
 Sound1Pan = 100
 EndIf
 SoundPan(SoundID,Sound1Pan)
 EndIf

 ; if the user hits the left arrow,
 ; move the pan a bit to the left
 If KeyboardPushed(#PB_Key_Left)
 Sound1Pan = Sound1Pan - 1
 If Sound1Pan < -100
 Sound1Pan = -100

190

 EndIf
 SoundPan(SoundID,Sound1Pan)
 EndIf

 ; if the user hits the right-control,
 ; raise the pitch slightly
 If KeyboardPushed(#PB_Key_RightControl)
 Sound1Frequency = Sound1Frequency + 1000
 If Sound1Frequency > 100000
 Sound1Frequency = 100000
 EndIf
 SoundFrequency(SoundID,Sound1Frequency)
 EndIf

 ; if the user hits the left-control,
 ; lower the pitch slightly
 If KeyboardPushed(#PB_Key_LeftControl)
 Sound1Frequency = Sound1Frequency - 1000
 If Sound1Frequency < 1000
 Sound1Frequency = 1000
 EndIf
 SoundFrequency(SoundID,Sound1Frequency)
 EndIf

 ; put up some text to explain usage
 ; put up text for information
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Up Arrow = Increase Volume, Down Arrow = Decrease Volume")
 DrawText(0,16,"Left Arrow = Pan Left, Right Arrow = Pan Right")
 DrawText(0,32,"Left-Control = Decrease Pitch, Right-Control = Increase Pitch")
 DrawText(0,48,"Spacebar = Play Explosion sound")

 DrawText(0,100,"SOUND INFORMATION:")
 DrawText(0,116,"Sound Volume = " + Str(Sound1Volume))
 DrawText(0,132,"Sound Pan = " + Str(Sound1Pan))
 DrawText(0,148,"Sound Frequency = " + Str(Sound1Frequency))

 DrawText(0,400,"Press ESCAPE to quit")
 StopDrawing()

 FlipBuffers()

Until KeyboardReleased(#PB_Key_Escape)

End

Play around with that demo a bit (making sure that you have the
“explosion1.wav” file in the proper location for loading) and you’ll get a
feel for the power of the sound commands.

191

Let’s take a look at the specifics though:

; Load in our .WAV file
SoundID = LoadSound(#PB_Any,"sounds/explosion1.wav")

; if our file loaded okay...
If SoundID
 ; initialize the Volume to half and set
 Sound1Volume = 50
 SoundVolume(SoundID,Sound1Volume)

 ; initialize the pan to center and set
 Sound1Pan = 0
 SoundPan(SoundID,Sound1Pan)

 ; initialize the pitch to highest and set
 Sound1Frequency = 44000
 SoundFrequency(SoundID,Sound1Pitch)

After verifying that the WAV has properly loaded, we can do some basic
setups of volume, pan, and frequency. We first setup a variable for each
and then call the corresponding command to get it all set. Then as the
user plays around in the program, we can adjust the values dynamically.

 ; if the user hits the right arrow,
 ; move the pan a bit to the right
 If KeyboardPushed(#PB_Key_Right)
 Sound1Pan = Sound1Pan + 1
 If Sound1Pan > 100
 Sound1Pan = 100
 EndIf
 SoundPan(SoundID,Sound1Pan)
 EndIf

Using the pan as an example, if the user presses the right arrow key,
he’ll hear the explosion move to the right speaker. This is extremely
useful in making a game seem more realistic.

Imagine running along with your soldier through enemy territory when
all the sudden you hear and explosion. If the panning is handled
correctly, then you’ll know that the explosion was off to your right,
which will help you know to run to the left. Also, if the developer was
thoughtful enough to control the volume and frequency of the sound
based on a relative distance from you you’ll have a better grasp of how
far to the left you have to run!

192

Multiple Sounds Playing Simultaneously
Obviously having only one explosion able to go off at any given time is
too much of a hindrance for any game developer worthy of their craft.
So how do we handle multiple explosions then?

The method we’ll use will call LoadSound to load the same sound in
multiple times, using differing identifiers for each. This works fine, but
you may want to control the number of allowable explosions to play
simultaneously so you can maintain some level of control. In the
following example, we will load up five explosion sounds for you to play
with:

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard, sound, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or InitSound() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Load in our .WAV files
For ExplosionSound = 0 To 4
 If LoadSound(ExplosionSound,"sounds\explosion1.wav")
 ; set the Volume
 Volume = Random(75) + 10
 SoundVolume(ExplosionSound,Volume)

 ; set the pan
 Pan = Random(200)
 If Pan > 100
 Pan = 100 - Pan
 EndIf
 SoundPan(ExplosionSound,Pan)

 ; set the frequency (pitch)
 Frequency = Random(50000) + 10000
 SoundFrequency(ExplosionSound,Frequency)
 Else
 MessageRequester("Error!", "Unable to load sound file",
#PB_MessageRequester_Ok)
 End
 EndIf
Next

193

; Keep going until the user hits ESCAPE
Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ExamineKeyboard()
 ; if the user hits the appropriate key, play the appropriate sound
 If KeyboardPushed(#PB_Key_1)
 PlaySound(0)
 EndIf

 If KeyboardPushed(#PB_Key_2)
 PlaySound(1)
 EndIf

 If KeyboardPushed(#PB_Key_3)
 PlaySound(2)
 EndIf

 If KeyboardPushed(#PB_Key_4)
 PlaySound(3)
 EndIf

 If KeyboardPushed(#PB_Key_5)
 PlaySound(4)
 EndIf

 ; put up text for information
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Use keys 1 - 5 to play the various explosions")

 DrawText(0,400,"Press ESCAPE to quit")
 StopDrawing()

 FlipBuffers()

Until KeyboardReleased(#PB_Key_Escape)

End

Notice how we’re able to have a number of sounds playing at the same
time? And all this done from loading right from the same WAV file. But
this isn’t the best way to handle things, is it? Nope. A better way is to
load a sound once and then just use it repeatedly as it’s needed.

To do this, we will first need to learn how to load sounds into memory.

Loading Sounds into Memory
While you can certainly get by with using LoadSound and pull the sound
file straight from the disk, another method you may consider is including

194

the file in memory and then “catching” it to a sound channel. To do this,
you’ll use the CatchSound command. Consider the following:

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard, sound, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or InitSound() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Load in our .WAV files from the DataSection
For ExplosionSound = 0 To 4
 If CatchSound(ExplosionSound,?ExplosionSound)
 ; set the Volume
 Volume = Random(75) + 10
 SoundVolume(ExplosionSound,Volume)

 ; set the pan
 Pan = Random(200)
 If Pan > 100
 Pan = 100 - Pan
 EndIf
 SoundPan(ExplosionSound,Pan)

 ; set the frequency (pitch)
 Frequency = Random(50000) + 10000
 SoundFrequency(ExplosionSound,Frequency)
 Else
 MessageRequester("Error!", "Unable to load sound file",
#PB_MessageRequester_Ok)
 End
 EndIf
Next

; Keep going until the user hits ESCAPE
Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ExamineKeyboard()
 ; if the user hits the appropriate key, play the appropriate sound
 If KeyboardPushed(#PB_Key_1)
 PlaySound(0)
 EndIf

195

 If KeyboardPushed(#PB_Key_2)
 PlaySound(1)
 EndIf

 If KeyboardPushed(#PB_Key_3)
 PlaySound(2)
 EndIf

 If KeyboardPushed(#PB_Key_4)
 PlaySound(3)
 EndIf

 If KeyboardPushed(#PB_Key_5)
 PlaySound(4)
 EndIf

 ; put up text for information
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Use keys 1 - 5 to play the various explosions")
 DrawText(0,400,"Press ESCAPE to quit")
 StopDrawing()

 FlipBuffers()

Until KeyboardReleased(#PB_Key_Escape)

End

DataSection
 ExplosionSound:
 IncludeBinary "sounds\explosion1.wav"
EndDataSection

The two pertinent pieces here are the DataSection and the use of the
CatchSound command.

DataSection
 ExplosionSound:
 IncludeBinary "sounds\explosion1.wav"
EndDataSection

Here is where we actually load in the WAV file for processing. At this
point PB has no idea that this is a sound file. It’s just loading a binary
file into memory.

 If CatchSound(ExplosionSound,?ExplosionSound)

196

This is where PB learns what type of tile it is and then loads it in. Note
the use of the ?ExplosionSound argument. The “?” signifies a pointer to
a label, which, of course, is ExplosionSound. 

CatchSound behaves exactly as LoadSound does, but instead of using a
file to load in the sound, it uses memory. This can be quite useful for
when you decide to pack all of your sounds into one file, or tack them
on to the end of your executable. You’ll be able to load the portion of
the packed file directly into memory and then use CatchSound to
actually load the sound in.

But, again, we are kind of stuck here because if you press the number
“1” over and over again, you’ll hear that explosion sound cut off and
restart. That’s not what we want ultimately though. We want to have
multiple sounds playing, overlapping each other, even if they’re the
same sound.

Overlaying Multiple Sounds
In order to get multiple sounds to overlap we’re going to have to be a
little sneaky. Actually, with most things in game development you end
up having to be a little sneaky…it’s the nature of the beast!

In this case our sneakiness will take us into the realm of using binary
loading of a WAV file within a data section, the CatchSound command
that we just touched on, the use of a structure with a list, and some
varied sound commands for effect.

Here is the code:

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard, sound, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or InitSound() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; setup our structure for the sounds
Structure SoundController
 ID.l
 Length.l
 StartTime.l
EndStructure

197

; make sure we have a list for the sounds
Global NewList Sounds.SoundController()

 ;**
 ; Procedure: MyPlaySound()
 ; Author: Derlidio Siqueira & John Logsdon
 ; Last Upd: 2/07/2005
 ; Purpose: Adds a sound to the Sounds list and
 ; randomizes it's volume, pan, and frequency values
 ; Args: n/a
 ; Returns: n/a
 ; Comments: None
 ;**
 Procedure MyPlaySound()

 ; first grab the sound out of memory
 ID = CatchSound(#PB_Any,?ExplosionSound)

 ; then set the approximate time for the sound
 Length.l = 5000

 ; if a valid ID is found
 If ID
 ; add the sound to the list
 AddElement(Sounds())

 ; then populate the list
 Sounds()\ID = ID
 Sounds()\Length = Length.l
 Sounds()\StartTime = ElapsedMilliseconds()

 ; set up some randomness for effect
 Volume = Random(50) + 50
 SoundVolume(ID,Volume)
 Pan = Random(200) - 100
 SoundPan(ID,Pan)
 Frequency = Random(30000) + 30000
 SoundFrequency(ID,Frequency)

 ; play the sound
 PlaySound(ID)

 EndIf

 EndProcedure

 ;**
 ; Procedure: MyReleaseSound()
 ; Author: Derlidio Siqueira
 ; Last Upd: 2/07/2005

198

 ; Purpose: Removes a sound from the Sounds list
 ; Args: n/a
 ; Returns: n/a
 ; Comments: This will kill a sound regardless if
 ; it is still playing or not. It kills
 ; the sound based on the time value
 ; given in MyPlaySound()
 ;**
 Procedure MyReleaseSound()
 ; run through each of the sounds
 ForEach(Sounds())
 ; if a particular one has expired (time-wise)
 If ElapsedMilliseconds() - Sounds()\StartTime > Sounds()\Length
 ; stop the sound, remove the sound, and delete the element
 ; from the list
 StopSound(Sounds()\ID)
 FreeSound(Sounds()\ID)
 DeleteElement(Sounds())
 EndIf
 Next
 EndProcedure

; Keep going until the user hits ESCAPE
Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ExamineKeyboard()
 ; if the user hits the spacebar, play the sound
 If KeyboardReleased(#PB_Key_Space)
 MyPlaySound()
 EndIf

 ; put up text for information
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Press the spacebar as much as you want to make explosions!")
 DrawText(0,400,"Press ESCAPE to quit")
 StopDrawing()

 FlipBuffers()
 MyReleaseSound()
Until KeyboardReleased(#PB_Key_Escape)

End

DataSection
; where we load in the explosion sound
ExplosionSound: IncludeBinary "sounds\explosion1.wav"
EndDataSection

199

Let's examine the structure:

; setup our structure for the sounds
Structure SoundController
 ID.l
 Length.l
 StartTime.l
EndStructure

; make sure we have a list for the sounds
Global NewList Sounds.SoundController()

All we’re really storing here is an ID value that will be returned by
PureBasic when we go to catch the sound, the length that the sound will
play in milliseconds (which is an estimate you’ll need to make for each
sound as PB has no built-in functionality for this), and the time, in
milliseconds, when the sound began playing. And finally we have to
create a list in order to make this structure useful to us. Remember that
since we're using this list outside of its normal scope, we need to make
it Global.

Now we have to actually get the sound into the list:

Procedure MyPlaySound()

 ; first grab the sound out of memory
 ID = CatchSound(#PB_Any,?ExplosionSound)

 ; then set the approximate time for the sound
 Length.l = 5000

We use #PB_Any to inform PB that we want it to handle the creation of
an unused value for our sound ID, and we use CatchSound to grab the
sound from memory. Then we set an approximate (or specific, if you
really want to) value to allow the sound to play.

Now we load up the list:

 ; if a valid ID is found
 If ID
 ; add the sound to the list
 AddElement(Sounds())

 ; then populate the list
 Sounds()\ID = ID
 Sounds()\Length = Length.l
 Sounds()\StartTime = ElapsedMilliseconds()

200

First make sure you verify that an ID was successfully created. If you
compare the ID returned and it’s a zero (0), then you don’t have a
sound to play with and you’ll get errors!

Call the AddElement command in order to open up a new slot in the
sounds list. Then populate them with the values we’ve already retrieved,
making sure to get the current time for the StartTime structure element
by calling ElapsedMilliseconds.

Since we still have the ID of the sound that was just created, let’s have
a little fun and mess around with the volume, pan, and frequency.

 ; set up some randomness for effect
 Volume = Random(50) + 50
 SoundVolume(ID,Volume)
 Pan = Random(200) - 100
 SoundPan(ID,Pan)
 Frequency = Random(30000) + 30000
 SoundFrequency(ID,Frequency)

And then, finally, we play the sound!

 ; play the sound
 PlaySound(ID)

Now that our playing of the sound is running fine, we must turn our
attention to removing the sound when it’s done playing. To do that we
must first run through the entire list of sounds and see what has
expired.

 Procedure MyReleaseSound()

 ; run through each of the sounds
 ForEach(Sounds())
 ; if a particular one has expired (time-wise)
 If ElapsedMilliseconds() - Sounds()\StartTime > Sounds()\Length

This little bit of code will take the time that the sound started, subtract
that from the number of milliseconds since the computer was powered
up, and then see if the resultant value is greater than the length we
prescribed this sound to play.

If so, then we stop the sound, free it from memory, and release the list
element that contained the ID, duration, and start timer information on
that sound.

201

 ; stop the sound, remove the sound, and delete the element from the list
 StopSound(Sounds()\ID)
 FreeSound(Sounds()\ID)
 DeleteElement(Sounds())

And that’s all there is to it!

Keep this in mind as it will be very useful for all your game sounds, and
there will be many!

Playing Music
Music files are not entirely different than sound files. Actually, PB treats
them the same way. For example, if you were to convert the explosion
WAV file into an OGG file (and call on the appropriate plug-in) it would
play it just fine. After all, a WAV file can be used for music. The problem
is that WAV files tend to be rather large, whereas OGG files are
compressed. Compression is good, assuming it’s done well. OGG files
sound excellent, they’re relatively small, and they’re royalty free to use
in your games (at least at the time of this writing). So they’re a good
choice for developers.

The following example demonstrates how similar the setup is for playing
music as it is for how we played the explosion sound:

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard, sound, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or InitSound() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; make sure we use the appropriate plug-in!
UseOGGSoundDecoder()

; Load in our .OGG file
MusicID = LoadSound(#PB_Any,"music\song.ogg")

If MusicID
 ; play the sound
 PlaySound(MusicID)
Else

202

 MessageRequester("Error!", "Unable to load sound file",
#PB_MessageRequester_Ok)
 End
EndIf

Repeat
 ClearScreen(ClearColor)
 StartDrawing(ScreenOutput())
 DrawText(0,0,"Playing the tune...press any key to exit")
 StopDrawing()
 FlipBuffers()
 ExamineKeyboard()
Until KeyboardReleased(#PB_Key_All)

End

This should get you started in the use of sounds and music. From here
you should play around with tying sounds into events, such as when a
person clicks the mouse button making a bullet sound. If a dot hits the
wall, make a bouncing sound or something. There are a bunch of things
you can do, so roll up your sleeves and get to work!

Music Modules
Many people use modules (also known as “mods”) to make their music.
The good news is that PureBasic supports the use of mods, so many
people may find that a useful thing to know.

PureBasic uses a module plugin (ModPlug XMMS) for all its mod uses.
Thus, to keep up to date on this mod's requirements and limitations,
please refer to your PB documentation (Help file), looking specifically
under the LoadModule command, or go to the ModPlug website:
http://modplug-xmms.sourceforge.net/

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard, sound, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or InitSound() = 0 Or InitModule() = 0 
  Or OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Thanks to Derlidio for donating this MOD!

203

; Load up he module, give it the id of 1
ModID = LoadModule(#PB_Any,"sounds\music.it")

; play the module
PlayModule(ModID)

Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ExamineKeyboard()

 ; put up text for information
 StartDrawing(ScreenOutput())
 DrawText(0,0, "Now playing: Derlidio's 'Get Ready!' mod :)")
 DrawText(0,400,"Press ESCAPE to quit")
 StopDrawing()

 FlipBuffers()

Until KeyboardReleased(#PB_Key_Escape)

; close down the module system
StopModule(ModID)

End

If you’re completely unfamiliar with mods, you may consider checking
out the following site:

 http://www.modarchive.com/

You’ll be able to find tons of songs, useful information, and even some
links to nice mod software packages.

204

http://www.modarchive.com/

Chapter 17: Timers

A big problem in making games is keeping the frame rate consistent
among many machines.

Let’s say that you have a slow computer. You create your game on this
computer and get it to run nicely. Next you release your game for
others to play, but they come back to you saying that it runs way too
fast. What you’ll find out is that the game will run as fast as the
computer will allow. Another issue may be that the game runs too
slowly on machines that are not as powerful as your computer. The
good news is that there are ways to combat this issue, but it will take
some work on your part.

Frames per Second (FPS) Tracking
You will need is a way to track how fast your FPS is in your game. Then
you have find a way to lock it to a certain rate regardless of the machine
the game is running on.

Frames per Second means how many times your game draws a scene
and displays it to the user every second. If you have a super fast
computer that runs your game at 120FPS, you may assume that it’s
going to be over 30FPS on slower machines…and you may well be right.
The problem is twofold here, though. Firstly, why would you want to
waste over 60-70FPS when most monitors can’t display frames that
fast? You’re actually only displaying half of the frames to the player, so
they are missing 50% of the action. Secondly, you’re going to have a
different play experience on each computer that people play on. That’s
not good. The experience should be as consistent as possible.

That said, let’s discuss how to show the current FPS for your game.

1) Setup a variable that keeps track of the starting frame time
2) While the current time is not greater than the starting frame time

plus 1000 (which translates as “while the current time is not 1
second greater than the starting frame time”), increment a counter
by 1.

3) When 1 second has passed:
a) Set the FPS tracker to the counter
b) Reset the counter to 0
c) Reset the starting frame timer to the current time

4) Go back to step 2

Here is a very small program that demonstrates this in action:

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640

205

#ScreenHeight = 480

; Initialize the sprite and keyboard, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title", 
  #PB_Screen_NoSynchronization) = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; setup our timer and init it's value
FPSTimer = ElapsedMilliseconds()

; setup our tracking variables
FPS = 0
FPSCounter = 0

; Keep going until the user hits ESCAPE
Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 If StartDrawing(ScreenOutput())
 For lines = 0 To 500
 ; choose random colors
 r = Random(254)
 g = Random(254)
 b = Random(254)
 ; draw out the line in the selected color, at random places and sizes
 Line(Random(639),Random(449),Random(150),Random(150),RGB(r,g,b))
 Next
 ; show the current FPS
 DrawText(0,460,"FPS = " + Str(FPS) + " -- Press ESC to exit...")
 Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
 EndIf

 StopDrawing()

 ; if the current time is 1000 milliseconds (1 second)
 ; past the starting timer
 If ElapsedMilliseconds() > FPSTimer + 1000
 ; set the FPS var to the FPS counter
 FPS = FPSCounter
 ; reset the counter
 FPSCounter = 0

206

 ; reset the timer
 FPSTimer = ElapsedMilliseconds()
 Else
 ; otherwise, ad 1 to the counter variable
 FPSCounter = FPSCounter + 1
 EndIf

 ExamineKeyboard()

 ; to make it so PB doesn't enable syncing, use FlipBuffers with a 0
 FlipBuffers()

Until KeyboardReleased(#PB_Key_Escape)

End

That little program will draw a bunch of lines on the screen using
random colors and locations. Depending on the speed of your computer
you will see either really high FPS or really low. My computer ran that
test at about 330FPS. Change the number of lines in the FOR…NEXT
loop and see how the FPS changes. Also, remove the
#PB_Screen_NoSynchronization argument from OpenScreen function
and you’ll see it get locked to your screen’s refresh rate. When I remove
that argument (or set it to 1), I get 60FPS with an occasional 59FPS.

So why not just use synchronization? Because not all machines will be
able to play your game fast enough to use that high of a rate. It could
very well be that many machines will be playing your game at well over
60FPS, so this may be a halfway decent solution. But what if the
monitor’s refresh rate is 72 for a particular computer? Then you’ll be
running it on that machine at 72FPS. But, again, if the machine that
you’re game is running on is very slow, your end-user may only see
30FPS. So we need a better solution.

Another problem with this example is that it uses a FOR…NEXT loop that
basically forces the computer to run through all of the processes
regardless of speed. This is important to note because you’ll want to be
careful with these types of things. While you’ll certainly need loops to
process all of your enemies, tiles, etc., be careful to control how often
they’re used.

The Rolling Timer
Another way to handle keeping the game moving decently on all
machines is to move all the objects based on the individual speeds of
the machines. I know that sounds obvious, but here’s the point: on a
fast machine you’ll want all the objects to move, say, only every 2
frames. Now, to the human eye, this will be undetectable. On a slow
machine you’ll want the objects to move multiple times each frame.

207

What we need to do is find a decent speed that we like, determine how
much time has elapsed each frame, then make a calculation to move
our objects multiple times before redisplaying (which can have a jumpy
effect if it’s a really slow machine).

Here is a piece of code that shows this:

; Initialize our main timer
Main_Timer = ElapsedMilliseconds()

ClearColor = RGB(0,0,0)

; Keep going until the user hits ESCAPE
Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ;what’s the difference in time since our last check?
 ElapsedTime = ElapsedMilliseconds() - Main_Timer

 ; slowing down! - clamp update to 40 FPS
 ; (1000/40=25 millisecs)
 If ElapsedTime > 25
 ClampValue = Elapsedtime / 25
 For i=1 To ClampValue
 ; update Objects here
 Next

 ; add appropriate offset to Main_Timer controller
 Main_Timer = Main_Timer + ClampValue * 25
 Else
 ; Update Objects here as normal and
 ; reset Main_Timer to the current time
 Main_Timer=ElapsedMilliseconds()
 EndIf
Wend

That code does nothing on its own, it’s meant to be incorporated into a
larger project, but let’s go through it to see what’s happening.

Main_Timer = ElapsedMilliseconds()

That piece grabs the current time and subtracts the initial time from it.
That way we’ll know how many milliseconds have passed since the
initialization.

If ElapsedTime > 25

208

Next we want to see if the difference is greater than 25 milliseconds.
We do this because if you take 1000 milliseconds (1 second) and divide
it by 40 (what we want our FPS to be), you’ll get 25. So, the idea is
that we want updates done and displayed every 25 milliseconds. Since a
millisecond is a specific unit of measure, all computers will share the
same value for it. One full second on an i3 chip is the equivalent to 1
full second on an i7 machine.

ClampValue = Elapsedtime / 25

The next thing we need to do is divide how much time has elapsed by
the value of 25. This is because slower machines will likely be way past
the 25-millisecond mark on your renderings. So, let’s say that a slow
computer is hitting 75 milliseconds per frame. Since 75 divided by 25 is
3, we’ll want to make 3 updates before our next frame.

For i=1 To ClampValue
 ; update Objects here
 Next

The above code does exactly this. Since each time you update an object
it moves X, Y (and maybe Z) values, a slower machine will need to
make more than one of these updates per frame.

Main_Timer = Main_Timer + ClampValue * 25

Now we need to multiply our ClampValue by that 25 and add it to our
current Main_Timer value so we bring up the timer values accordingly.

Else
 ; Update Objects here as normal and
 ; reset Main_Timer to the current time
 Main_Timer=ElapsedMilliseconds()
EndIf

If the elapsed time doesn’t go past 25 then your game is running faster
than 40FPS and we just want to update the objects as we always do and
then reset the timer.

Now you may be thinking that this will look really bad. Each frame
instead of 1 or 2 pixel moves per object, it could be 3-6 pixels. If the
machine is really slow, it will look choppy. But it isn’t that bad on
machines that are off by 25-50ms, and it’s better that you control the
movement of the objects than allowing it to be controlled by the frames
themselves. If you’re running at 20FPS and not controlling things, for
example, you’re going to see a ship take twice as long to cross from

209

point A to point B than on machine running at 40FPS. With the rolling
timer method, they will pass between the points at the same speed,
albeit a little choppier.

The biggest problem with this method is that it doesn’t cap the FPS.
That means that you could literally be displaying far more images than
your monitor can handle. But used in combination with the OpenScreen
that doesn't use the #PB_NoSynchronization option in PureBasic, and
you may have something good going!

Locking in at Real Time
I have seen a number of games using the Real Time method. I have
tried it myself with great success as well.

The idea is that you want to define how many units per second an
object is allowed to move. The number of units is defined by you, as
well as what exactly a unit is sized at. For example, you may decide
that a missile can only move at 20 pixels per second. That being the
case, 20 pixels = 1 unit for missiles. Ship A may move at 15 pixels per
second while ship B moves at 17 pixels per second. Therefore, Ship A’s
units are sized at 15 pixels and Ship B’s at 17 pixels.

Now, since we are likely updating by milliseconds, not full seconds, we’ll
want the accuracy given to us by floating point numbers. If we went
with integers there would be some drastic jumps on the screen by your
objects.

Below is a little demo that moves a box across the screen and does so
by using the Real Time method. Study the code carefully to see how it
works.

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize the sprite and keyboard, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; setup our timers and init their value
FPSTimer = ElapsedMilliseconds()
Start_Time.f = ElapsedMilliseconds()

210

; setup our FPS tracking variables
FPS = 0
FPSCounter = 0

; setup our real time tracking variables
XUnit.f = 0.250
YUnit.f = 0.125

; setup our starting points
X.f = 0
Y.f = 0

; Keep going until the user hits ESCAPE
Repeat
 ; clear the screen
 ClearScreen(ClearColor)
 ; get the current time
 Current_Time.f = ElapsedMilliseconds()
 ; determine how much time has passed
 Time_Passed.f = Current_Time - Start_Time
 ; reset the start time
 Start_Time = Current_Time
 ; Add X's current value to the number of units it is to move
 ; multiplied the amount of time that has passed
 X = X + (XUnit * Time_Passed)
 ; if the resultant value goes beyond the screen, reset to 0
 If X > #ScreenWidth
 X = 0
 EndIf

 ; Add Y's current value to the number of units it is to move
 ; multiplied the amount of time that has passed
 Y = Y + (YUnit * Time_Passed)
 ; if the resultant value goes beyond the screen, reset to 0
 If Y > #ScreenHeight
 Y = 0
 EndIf

 If StartDrawing(ScreenOutput())
 ; draw out the box
 Box(X,Y,20,20,RGB(255,0,255))

 ; show the current FPS
 DrawText(0,460,"FPS = " + Str(FPS) + " -- Press ESC To exit...")
 Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
 EndIf

211

 StopDrawing()

 ExamineKeyboard()

 FlipBuffers()

 ; if the current time is 1000 milliseconds (1 second)
 ; past the starting timer
 If ElapsedMilliseconds() > FPSTimer + 1000
 ; set the FPS var to the FPS counter
 FPS = FPSCounter
 ; reset the counter
 FPSCounter = 0
 ; reset the timer
 FPSTimer = ElapsedMilliseconds()
 Else
 ; otherwise, ad 1 to the counter variable
 FPSCounter = FPSCounter + 1
 EndIf

Until KeyboardReleased(#PB_Key_Escape)

End

Now, if you use that method and set up a field in a structure to handle
all these units, you’ll be able to control how many units each object on
the screen is moved. That way you’ll have objects moving at all
different speeds!

Here’s an example that does just that. It will display 100 boxes of
varying sizes and move them around at varying speeds. Each distance
moved on both the X and Y values will be determined by a random value
generated for X units per second and Y units per second. Study this
closely to see how it works.

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize the sprite and keyboard, and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

212

; setup our structure for the boxes
Structure BoxStructure
 X.f : Y.f
 Width.l : Height.l
 r.l : g.l : b.l
 XUnits.f : YUnits.f
EndStructure

; make sure we have a list for the boxes
Global NewList Boxes.BoxStructure()

 ;**
 ; Procedure: CreateBoxes()
 ; Author: John Logsdon & Derlidio Siqueira
 ; Purpose: Creates a new box with random info
 ; Args: Amount - Number of boxes to create
 ;**
Procedure CreateBoxes(Amount.l)
 For i = 0 To (Amount - 1)
 If AddElement(Boxes()) <> 0
 Boxes()\X = 0
 Boxes()\Y = 0
 Boxes()\r = Random(254)
 Boxes()\g = Random(254)
 Boxes()\b = Random(254)
 Boxes()\Width = Random(25) + 5
 Boxes()\Height = Random(25) + 5
 Boxes()\XUnits = ((Random(1000) * 0.375)/1000.0 + 0.050)
 Boxes()\YUnits = ((Random(1000) * 0.375)/1000.0 + 0.050)
 Else
 MessageRequester("Error!", "Unable to add element", 
  #PB_MessageRequester_Ok)
 End
 EndIf
 Next
EndProcedure

 ;**
 ; Procedure: UpdateBoxes()
 ; Author: John Logsdon & Derlidio Siqueira
 ; Purpose: Moves our boxes around the screen
 ; Args: Modifier - The time since last call
 ;**
Procedure UpdateBoxes(Modifier.f)
 ForEach(Boxes())
 ; Add X's current value to the number of units it is to move
 ; multiplied the amount of time that has passed
 Boxes()\X = Boxes()\X + (Boxes()\XUnits * Modifier)
 ; if the resultant value goes beyond the screen, reset to 0
 If Boxes()\X > #ScreenWidth
 Boxes()\X = 0

213

 EndIf

 ; Add Y's current value to the number of units it is to move
 ; multiplied the amount of time that has passed
 Boxes()\Y = Boxes()\Y + (Boxes()\YUnits * Modifier)
 ; if the resultant value goes beyond the screen, reset to 0
 If Boxes()\Y > #ScreenHeight
 Boxes()\Y = 0
 EndIf

 If StartDrawing(ScreenOutput())
 ; draw the box
 Box(Boxes()\X,Boxes()\Y,Boxes()\Width,Boxes()\Height,RGB(Boxes()\r, 
  Boxes()\g,Boxes()\b))
 Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()", 
  #PB_MessageRequester_Ok)
 End
 EndIf

 StopDrawing()
 Next
EndProcedure

; setup our timers and init their value
FPSTimer = ElapsedMilliseconds()
Start_Time.f = ElapsedMilliseconds()

; setup our FPS tracking variables
FPS = 0
FPSCounter = 0

; create some boxes
CreateBoxes(100)

; Keep going until the user hits ESCAPE
Repeat
 ; clear the screen
 ClearScreen(ClearColor)
 ; get the current time
 Current_Time.f = ElapsedMilliseconds()
 ; determine how much time has passed
 Time_Passed.f = Current_Time.f - Start_Time.f
 ; reset the start time
 Start_Time.f = Current_Time.f

 ; update and draw the boxes to the screen
 UpdateBoxes(Time_Passed.f)

 If StartDrawing(ScreenOutput())

214

 ; show the current FPS
 DrawText(0,460,"FPS = " + Str(FPS) + " -- Press ESC to exit...")
 Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 End
 EndIf

 StopDrawing()

 ExamineKeyboard()

 FlipBuffers()

 ; if the current time is 1000 milliseconds (1 second)
 ; past the starting timer
 If ElapsedMilliseconds() > FPSTimer + 1000
 ; set the FPS var to the FPS counter
 FPS = FPSCounter
 ; reset the counter
 FPSCounter = 0
 ; reset the timer
 FPSTimer = ElapsedMilliseconds()
 Else
 ; otherwise, ad 1 to the counter variable
 FPSCounter = FPSCounter + 1
 EndIf

Until KeyboardReleased(#PB_Key_Escape)

End

There are a couple of things in this code that I want to touch on.

 Boxes()\XUnits = ((Random(1000) * 0.375)/1000.0 + 0.050)
 Boxes()\YUnits = ((Random(1000) * 0.375)/1000.0 + 0.050)

You may be wondering what is going on here. The issue is that the
Random command will not return a precision decimal value. If a float is
used as the destination for the return, the value will be made a decimal
(like 500.0), but only whole values are returned. We need precision, so
we use a little math.

Here is how it looks broken down:

 Value.f = Random(1000)

215

That, obviously, will return a value between 0.0 and 1000.0. Let’s
imagine that we were returned the value of 425.0.

Value.f = Value.f * 0.375

...or...

Value.f = 425.0 * 0.375 = 159.375

So now we have a value resultant value of 159.375. That’s far too high
for the speeds we want. So we have to get rid of the values to the left of
the decimal. Since we multiplied by a three decimal value, we will need
to divide the resultant value by 1,000. If we had use a two decimal
value in our multiplication (i.e. 425.0 * 0.25), then we would divide the
result by 100…and so on.

Value.f = Value.f/1000

... or ...

Value.f = 159.375/1000 = 0.159375

And from here we want to add any differential (mostly to ensure we get
a non-zero value). In this case, let’s use 0.050.

Value.f = Value.f + 0.050

... or ...

Value.f = 0.159375 +0.050 = 0.209375

Which means that for every time-interval that passes, we will be moving
this particular object 0.209375 pixels. As you can see, this means that
roughly every 10 time-intervals, this object will move one pixel over.
Now that’s control!

If you use a combination of the techniques discussed in this chapter,
you should be able to get a really good handle on speed control across
various computers. But the main thing to do is test, test, test: have
your friends test on all their differing machines until you find a solution
that works best for your style of game.

216

217

PART 3:
Migz Callo: Laser Blazer

Chapter 18: Game Design

One thing that’s almost always overlooked is game design. People
typically start out just doing a little bit of this and a little bit of that and
before long they have a game shaping up. Of course when they go back
to look at their game, it’s often in need of a revamp. This usually occurs
because there wasn’t a real strong idea of where the game was going.

Now in the case of copying another game, most of the work is already
done for you.

For example, if you were to make an Asteroids clone, do you really need
a full design document for that? Probably not, but if you’re planning to
really expand on the original game, you may want to at least consider
some asset lists and balancing issues.

Another benefit of making a design document is that it often helps you
see some items that will be affect later but what you do now. Imagine
spending a few days wrestling with collision concepts on a predefined
sprite size. You get it all figured out—finally—and you’re all happy. And
then you get that next piece of art that has a totally different size and it
doesn’t want to play nicely with your collision routines. If you had spent
the time designing the collision routines more openly you’d still be okay,
but at the time of coding it wasn’t something you had to worry about.
Fortunately, you don’t really need to worry about collision routines
anyway since PB already handles them…it was just an example!

So, with that, here is a simple game design for the demo game:

Title: Migz Callo: Laser Blaser
Game design: John “Krylar” Logsdon
Art design: Ric “Putty” Lumb
Music: Steve “Fash” Harrison
Game type: 2D Side-Scroller, futuristic shoot‘em-up

Background Story
Top of his class at Rignally’s School for Robotic Decimation, Migz Callo
was the natural selection for dealing with the machine-overtake at
Cyclopticbots, Inc.

Cyclopticbots had spent the better part of two cycles developing robots
that would have highly advanced decision-making abilities, while
retaining their natural metallic charm. Unfortunately, the plan went
awry. The robots made less than thoughtful choices on most occasions,
and were prone to laziness and irritability. Though not nearly as
intelligent as their designers had hoped, the robots were good with
guns, and they seemed more than willing to use them. Within weeks of
the first batch, the ill-tempered robots had taken up their weapons and
driven all the scientists and support personnel away.

220

Finally, after many failed attempts of Cyclopticbot’s own security forces,
the decision was made to acquire the best and brightest from Rignally’s.

Most graduates were placed on a team for their first runs, but not the
academically acclaimed “Laser Blazer.” No, Migz Callo had been special
from day one. His ability to bolt up and down ladders faster than any of
his peers alone made him somewhat of a notable figure. But it was his
quick-draw speed with the laser that really turned heads. Where most
could drag a weapon at 50% the speed of a robot, Migz—more often
than not—matched or bettered the bots. Even veterans were amazed at
the pull-speed the young man had.

So when the vets were approached to take on the Cyclopticbot’s job,
they tipped their hats toward the Laser Blazer…most in the hopes of
seeing the young hotshot fail.

Migz took the job, got on the ship, beamed to the clearest door in the
station, strapped on his gear, adjusted his goggles, and donned his
trademarked mischievous grin.

Now’s the time to do the job he’s been trained for: Total Robotic
Decimation.

Game Features
Here is a brief list of what we’re going for in this game. Keep in mind
that this is a demo game!

 Three demo levels to nuke robots
 Challenging and addictive game play
 Cool futuristic space station artwork, robots, and good ‘ol Migz

himself
 Awesome soundtrack by Steve “Fash” Harrison
 If you own the “Programming 2D Scrolling Games” book, you’ll

also have the full source-code and chapters explaining how the
game was made

 Full 2D level designer (no source) supporting the game's 32x32
tileset or any player-made tilesets of the same size

Art Asset List
All transparencies are Magenta (255,0,255) so PB will know which colors
to process.

 Cheezy little space backdrop (snagged from NSG space game)

221

 User Interface for game-play. Just a basic wrapper for the game
window, maybe with the main character thrown in and the game
name too.

 Splash screen ("Migz Callo: Laser Blazer")

222

 Story Screen – Just something to give the basic idea of the game

 How to play – This is a tips and tricks page

223

 Tile images (32x32) -- Futuristic Looking
o Walls (including edge-of-map versions for corners). Cracked

pieces, power switches, etc.
o Ceiling (for top of map)
o Floors (with edge for depth)
o Floor grill (with edge for depth)
o Computer Wall Tiles
o Door (one entry, one exit)
o Ladder (need bottom, center, and top pieces)

 Player Sprite – Space Spy (32x32)

224

o I see the player as wearing a baggy black spacesuit, blaster
in hand, a pair of goggles, and a headband that his
disheveled hair pokes out and hangs over.

o 8 Frames walking left
o 8 Frames walking right
o 8 Frames climbing
o Frames standing still, facing left, drawing and firing gun
o Frames standing still, facing right, drawing and firing gun
o Frame of the player being hit
o Frames player disintegrating
o Frames of the player fidgeting (cause the keys aren’t

moving)
o Frames of the player sleeping

225

 NPC Sprite Robot (32x32)
o Silver, one red-light eye that sweeps back and forth
o 8 Frames walking left
o 8 Frames walking right
o Frames standing still, facing left, drawing and firing gun
o Frames standing still, facing right, drawing and firing gun
o Frame of the robot getting hit

226

o Frames robot disintegrating

 Blue laser bolt (8x8)
 Red laser bolt (8x8)
 Blue mini-laser explosion (8x8) for laser hitting target and walls
 Red mini-laser explosion (8x8) for laser hitting target and walls

 HealthPak (16x16)

 Credits Screen (names and duties to be provided)

227

Sound Asset List

 Laser firing (will take single sound and change frequency for robot’s
laser)

o Laser.wav – Player frequency 30000
o Laser.wav – Robot frequency 12000

 HealthPak pickup
o Powerup.wav – set volume to 60

 Player hit
o Playerhit.wav – set volume to 75

 Player disintegration
o Playerdeath.wav

 Robot hit
o Robothit.wav – set volume to 75

 Robot disintegration
o Robotdeath.wav – set volume to 60

 Start of level
o Startlevel.wav

 Exit level
o Exitlevel.wav – set volume to 75

 Intruder Alert
o Intruderalert.wav

 Player snoring
o Snore.wav – set volume to 90

228

Music Asset List
Just need one futuristic spy tune that is able to loop nicely. Should be
upbeat and have that side-scroller action feel.

o Spy.ogg – set loop to true

Map Asset List

 Level 1: Not too complex a level layout, but challenging enough.
Few robots so the player can get the feel.

o Migzlevel1.dat
 Level 2: More robots, more healthpaks, and a different layout, but

the same width/height ratio. This should be challenging.
o Migzlevel2.dat

 Level 3: Lots of robots and healthpaks. This one should be really
tough. The width/height ratio should be changed…making it more
high than wide this time.

o Migzlevel3.dat

Technical List
 Will need the ability to scroll a two-dimensional map of any size,

including tile-sizes. Note that this game will use 32x32 tiles though.
 Player and robots must be animated appropriately depending on

direction, firing status, hit and death status, etc.
 Player must be able to climb down/up ladders as needed to get to

the robots.
 Robots should give the appearance of thought, even though it may

be minor. They should have a timeout where they select a random
action and follow-through with it. It is to give the player the feeling
that the robots are patrolling.

 If a player gets within a certain distance of a robot, the robot (at its
next decision cycle) should turn toward the player and start firing.

 The player must move with and independently of the map. So if the
player is at the edge of the map, the map should stop scrolling while
the player continues walking. If the player hits the center of the
view port, walking away from the map’s edge, the map should begin
to scroll with the player.

 The player should pickup health when hitting a healthpak and the
players/robots should lose health when hit. Duh.

 When all the robots in a level are wiped out the exit door should
become active.

 Sounds should play at appropriate levels upon called actions (firing,
hits, deaths, etc.) and should be layered (not stomp on each other
or cut off each other).

 All level assets should refresh upon player death or new level entry.
 Display a little health bar over the player and robots heads to keep

track of, well, health.

229

Chapter 19: Z-Ordering

What is Z-Ordering?
The term “Z-Ordering” can mean something different depending on
context. In the realm of 3D graphics, I've seen it described as "...to
derive closed-form relations for the difference between the node indices,
which can be used to browse the tree in constant time." That's NOT the
way we'll be using it in this book.

Since we'll be applying Z-Ordering to a 2D graphics plane, I'll define the
term as "the drawing of graphical elements in order of their height in
respect to graphics plane." Look at the image below and you'll see that
we have three planes of drawing. Each overlaps the other.

(Figure 19.1)

These are the planes of drawing. Anything that you draw on plane -1
will be "under" anything drawn on plane 0 or plane 1, as anything on
plane 0 will be "under" anything drawn on plane 1. To further
demonstrate, I've filled in that image here:

230

(Figure 19.2)

Note that the only plane completely visible is plane 1.

Why Use Z-Ordering?
There are lots of reasons you'll want to use this concept. If you take the
standard space game, for example, you would probably want your ship
to look as if it's hovering over a planet. Or maybe you'll have a neat
little code that lets you hide behind planets (in multiplayer maybe?).
How are you going to visually do that? The only way is to control the
order in which you draw the planet and the ship.

Another example would be our side-scrolling game. We have to choose
the order in which Migz will be shown. So we do this:

 Draw the backdrop
 Draw the Tiles
 Draw the Healthpaks
 Draw the Robots
 Draw the Lasers/Explosions
 Draw Migz

So the Migz is on top of the lasers, and the lasers are on top of the
robots, etc. Since we can use transparency in our images, it also can
give us the illusion of depth!

How to Implement Z-Ordering
One way is to define certain images ahead of time to have a certain
plane. This works great in the case of the side-scrolling game. You
define either an array or structure (depending on your preference) that
contains all of the Plane 0 elements. Then others that contains all the
Plane -2, Plane -1, Plane 1, Plane 2, etc. (as many you want, really).

231

Next you start at the lowest Plane and draw it, then move up to the
next, draw it, and then continue that cycle until they're all drawn.

Sometimes you'll want to be more dynamic (as in the case of a football
game). In this case, you'll need to have the Z-Order for each Image
dynamic. This way, depending on comparisons in your game, you'll be
able to change the value of Z-Order in your "Update" phase and watch
the change take effect in your "Render" phase.

Here is a piece of code that grabs three images and moves them over
each other based on Z-Order. With only 3 images, this is really
unnecessary, but it gets the point across of how to use this technique.

; setup our Screen Width and Height here for easier tracking
#ScreenWidth = 640
#ScreenHeight = 480

; Initialize sprite and keyboard systems and a 640x480, 16-bit screen
If InitSprite() = 0 Or InitKeyboard() = 0 Or 
  OpenScreen(#ScreenWidth,#ScreenHeight,16,"App Title") = 0
 MessageRequester("Error!", "Unable to Initialize Environment", 
  #PB_MessageRequester_OK)
 End
EndIf

ClearColor = RGB(0,0,0)

; Use the PNG decoder for image loads.
UsePNGImageDecoder()

; load in the sprites
Tile1_Image = LoadSprite(#PB_Any,"tile1.png")
Tile2_Image = LoadSprite(#PB_Any,"tile2.png")
Robot_Image = LoadSprite(#PB_Any,"robot.png")
; set the appropriate mask so we have transparencies
TransparentSpriteColor(Robot_Image,RGB(255,0,255))

Structure Sprites
 Image.l
 X.l
 Y.l
 Direction.l
 ZOrder.l
EndStructure

; setup a list for the Images
NewList Sprite.Sprites()

; Tile 1
AddElement(Sprite())

232

Sprite()\Image = Tile1_Image
Sprite()\X = 125
Sprite()\Y = 100
Sprite()\Direction = -1
Sprite()\ZOrder = -1

; Tile 2
AddElement(Sprite())
Sprite()\Image = Tile2_Image
Sprite()\X = 100
Sprite()\Y = 100
Sprite()\Direction = 0
Sprite()\ZOrder = 0

; Robot
AddElement(Sprite())
Sprite()\Image = Robot_Image
Sprite()\X = 75
Sprite()\Y = 100
Sprite()\Direction = 1
Sprite()\ZOrder = 1

Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ; Use this FOR...NEXT loop to cover each ZOrder plane of
 ; drawing. So, if we're at -1, that will be the bottom.
 ; 0 will be the middle (or baseline), and 1 will be the top.
 For Planes = -1 To 1
 ; run through each of our sprites
 ForEach(Sprite())
 ; see if the current sprite is on this plane
 If Sprite()\ZOrder = Planes
 ; if so, move it based on its direction
 Select Sprite()\Direction
 Case -1
 Sprite()\X = Sprite()\X - 1
 If Sprite()\X < 75
 Sprite()\Direction = 1
 EndIf
 Case 1
 Sprite()\X = Sprite()\X + 1
 If Sprite()\X > 125
 Sprite()\Direction = -1
 EndIf
 EndSelect
 ; display the sprite
 DisplayTransparentSprite(Sprite()\Image,Sprite()\X,Sprite()\Y)

233

 EndIf

 Next
 Next

 ; put up text for exiting
 StartDrawing(ScreenOutput())
 DrawText(0,460,"Press Space to change the ZOrder, or ESC To quit")
 StopDrawing()

 FlipBuffers()

 ExamineKeyboard()

 ; if the spacebar gets pressed
 If KeyboardReleased(#PB_Key_Space)
 ; run through the sprites
 ForEach(Sprite())
 ; and alter their ZOrder and Direction
 Select Sprite()\ZOrder
 Case -1
 Sprite()\ZOrder = 0
 Sprite()\Direction = 0
 Case 0
 Sprite()\ZOrder = 1
 Sprite()\Direction = 1
 Case 1
 Sprite()\ZOrder = -1
 Sprite()\Direction = -1
 EndSelect
 Next
 EndIf
Until KeyboardReleased(#PB_Key_Escape)

End

For fun you could hook up a function that puts a bunch of these images
up in Random X, Y locations, with Random Z-Orders. Should be a pretty
simple thing to do and it could help you get your hands dirty in this
coding practice.

234

Chapter 20: Loading Map Files

The method described here is just one of many, and it is a simple
method. But it should be good enough to get you started. After seeing
how this works, I would recommend that you expand upon this and
make it much more robust.

Loading Tiles
Before doing anything with the map, we need to have something to
display. Generally folks put a bunch of fixed-sized tiles (though they can
be varied in size if your code permits) in a single image file. Sometimes
all of the tiles run together, such as shown here:

(Figure 20.1)

Other times, the artist puts a block around each image to keep them
visually separated:

(Figure 20.2)

This is an important distinction because you don't want to end up
loading the blocks with the images, you just want the actual images.
Because of this, you'll not only need to know how tall and wide each
image is, but also how much space is between each of your images.

For example, let's say that you have images that are 32x32. That is,
they are 32 pixels wide by 32 pixels high. And let's say that you've put a
1x1 box around each image. When you go to use the GrabSprite(…)
command in PB, you don’t want to grab from 0,0 (the top left of the
image), rather you should grab from the inside-top-left edge of the box
at 1,1. See below for an example:

235

(Figure 20.3)

In an effort to make this entire process easier on the caller, I've set up a
group of functions for a map loading/displaying library. I named it
“maplib.pb.” You can call it whatever you want.

At the very top of the map library, I have set a number of global
variables and arrays for keeping track of the map and collisions too.
Here they are:

;**
;* Begin Map Control Defines
;**
; Structure For the TileList

Structure Map_Tiles
 Image.l
 X.l
 Y.l
 Width.l
 Height.l
EndStructure

Global Map_TotalTiles.l
Map_TotalTiles = 0

Global Map_TilesImages.l

; Dimension our tile array
Global Dim Tile.Map_Tiles(Map_TotalTiles)
Global Map_FullTiles.l
Map_FullTiles = 0

; Structure for the Map_Data
Structure Map_Data
 TileNumber.l
EndStructure

; Globals to track the map dimensions
Global Map_Width
Map_Width = 1
Global Map_Height
Map_Height = 1
Global Map_X_Start

236

Map_X_Start = 0
Global Map_Y_Start
Map_Y_Start = 0
Global Map_X_DisplayOffset
Map_X_DisplayOffset = 0
Global Map_Y_DisplayOffset
Map_Y_DisplayOffset = 0
Global Map_ScrollWidth
Map_ScrollWidth = 0
Global Map_ScrollHeight
Map_ScrollHeight = 0

; Dimension our Map array
Global Dim Map.Map_Data(Map_Width,Map_Height)
Global Dim MapHold.Map_Data(Map_Width,Map_Height)

;**
;* End Map Control Defines
;**

;**
;* Begin Collision Control Defines
;**

; create the Player collision array for bounding boxes on the player
Global Dim Map_PlayerCollisionArray(16)

; setup the walls structure for knowing where all the walls are for collisions
Structure Map_Walls
 TileNumber.l
 X.l
 Y.l
EndStructure

; setup a list for the map walls
Global NewList Wall.Map_Walls()

; setup the walls structure for knowing where all the walls are for collisions
Structure Map_Ladders
 TileNumber.l
 X.l
 Y.l
EndStructure

; setup a list for the map walls
Global NewList Ladder.Map_Ladders()

;**
;* End Collision Control Defines
;**

237

We will have to load the actual image tiles each time a new map is
loaded. In order to do this, we will have to open the image file that has
all of our tiles in it, then run through and load up each into the Tile array
structure.

The following source is fully commented so study it carefully!

;;
; Procedure: Map_LoadTiles(...)
; Author: Krylar
; Description: This function loads in the actual tiles to be used
; with the map. It takes into account any boxes that may have
; been placed around each image by allowing the caller to specify
; the box widths and heights.
;
; Arguments:
; Tile_Full_Path.s = Tile Image file, including the full path
; TileWidth = Width of the tiles being loaded
; TileHeight = Height of the tiles being loaded
; TileSpacer = If there are boxes around the tiles, set this to
; the number of pixels that the boxes are wide and high.
;;
Procedure Map_LoadTiles(Tile_Full_Path.s,TileWidth,TileHeight,TileSpacer.l)

 Dim Tile.Map_Tiles(0)

 ; first off let's load the full image containing all the tiles
 ; into a temporary space
 Temp_Image.l = LoadSprite(#PB_Any,Tile_Full_Path.s)

 ImageSizeX.l = SpriteWidth(Temp_Image.l)
 ImageSizeY.l = SpriteHeight(Temp_Image.l)

 TileColumns.l = ImageSizeX.l / TileWidth
 TileRows.l = ImageSizeY.l / TileHeight

 Dim Tile.Map_Tiles(TileRows.l * TileColumns.l)

 If Temp_Image.l = 0
 ProcedureReturn(-1)
 EndIf

 ; get the current buffer so we can restore to it
 DisplaySprite(Temp_Image,0,0)

 ; setup our basic vars. The X and Y values will be whatever the XSpacer
 ; and YSpacer values are. If they are 0, then it's assumed that there is
 ; no space between the tiles. If you look at the sample images included
 ; with this demo you'll see a white box around each image...that's why
 ; I have these spacers...we don't wanna load the boxes, just the images.

238

 X.l = TileSpacer.l
 Y.l = TileSpacer.l

 ; keep track of the number of images
 ImageNumber.l = 0

 ; run through the total number of rows (minus 1, of course)
 For Rows.l = 0 To TileRows.l -1
 ; and run through all the columns per row (minus 1 again)
 For Columns.l = 0 To TileColumns.l -1
 ; create a new TileList element and assign it the current
 ; ImageNumber. Then populate the TileList element with
 ; the TileWidth, TileHeight, and the actual Tile_Image
 Tile(ImageNumber)\Width = TileWidth
 Tile(ImageNumber)\Height = TileHeight

 ; then we grab the image based off the size setup in CreateImage(...)
 ; from our X,Y location
 Tile(ImageNumber)\Image=GrabSprite(#PB_Any,X,Y,TileWidth,TileHeight)

 ; now we add X to the TileWidth and the XSpacer to get the new X position.
 ; So, if our current X = 2, and the TileWidth = 32 and the XSpacer = 2, we'd
 ; have X = 2 + 32 + 2, or 36. This means that the next time we call
 ; GrabImage(...) it will start grabbing from the X position 36 (or the 36th pixel
 ; from the left).
 X.l = X.l + TileWidth + TileSpacer.l

 ; increment our tile counter (for the array positioning)
 ImageNumber.l = ImageNumber.l + 1
 Next
 ; we've finished with that row, so reset X back to the spacer position
 X.l = TileSpacer.l

 ; now we add Y to the TileHeight and the YSpacer to get the new Y position.
 ; So, if our current Y = 2, and the TileHeight = 32 and the YSpacer = 2, we'd
 ; have Y = 2 + 32 + 2, or 36. This means that the next time we call
 ; GrabImage(...) it will start grabbing from the Y position 36 (or the 36th pixel
 ; from the top).
 Y.l = Y.l + TileHeight + TileSpacer.l
 Next

 ; free the image from memory, so we don't hold memory for no reason
 FreeSprite(Temp_Image)

 ; reset our global tile tracker
 Map_TotalTiles.l = ImageNumber.l

 ProcedureReturn(0)
EndProcedure

239

There is a lot to that function, but if you go over it a few times it should
become clear how it works.

Text-Based Map File Format
There are many ways to layout a map file. Some use numbers separated
by spaces or commas, others use various methods of encryption, some
just go straight across with the numbers and parse appropriately.
Additionally, some map generators and files take into consideration Z-
Ordering.

For ease of understanding, I've decided to go with numbers separated
by commas.

The first line of my map file will have two numbers: The width, or
columns on the map, and the height, or rows on the map. Immediately
following that will be the appropriate number of rows of data mixed with
the appropriate number of columns. Here is an example:

 3,2
 10,1,5
 4,15,6

This map says that there are 3 columns and 2 rows. The first row
contains 3 images and they are: Image 10, Image 1, and Image 5. The
second row's images are: Image 4, Image 15, and Image 6. Continuing
down this thought process should show you that when you call on the
Tile structure and ask for the corresponding image, you’ll see that image
appear in the appropriate X,Y coordinates on your screen.

Loading Map Dimensions
In order to load this data in, we must first determine the number of
elements we'll need to store within our MapData array. In order to make
this easier on the caller I have created two functions to handle reading
in the map data. The first is called Map_ReadDimensions and its sole
purpose is to open a map data file, read in the first line, and parse that
line so it knows how many columns and rows are in the map.

Take a look at the function and study the comments closely:

;;
; Procedure: Map_ReadTextDimensions(...)
; Author: Krylar
; Description: This function loads in the actual dimensions of
; the map file and stores the values in Map_Width and Map_Height.
; This function is for use with TEXT files only.
; Arguments:
; Map_Full_Path.s = Map file, including the full path

240

;;
Procedure Map_ReadTextMapDimensions(Map_Full_Path.s)

 ; first thing we do is open the file using a Pointer Variable (which
 ; is "FilePtr" in this case)
 FilePtr = ReadFile(#PB_Any,Map_Full_Path.s)

 ; if the file is not found, return -1
 If FilePtr = 0
 ProcedureReturn(-1)
 EndIf

 ; Then we read the first line of the file...it *should* contain the
 ; width/height data. If it doesn't, somebody goofed up on the layout
 ; of the file
 MapDimensions.s = ReadString(FilePtr)

 ; we need to set up some variables to parse the line. We could just
 ; set this up to have the x,y on two lines and save some trouble from
 ; a coding perspective, but this method makes the map creation more
 ; intuitive for the user...and that's our job ;)
 EndOfString = 0
 Offset = 0

 ; while we haven't reached the end of the string
 While EndOfString = 0
 ; let's first put the current position in the string into Temp$
 ; this is just 1 character from the string cause we use the Mid$(...)
 ; command to yank out that value
 Temp.s = Mid(MapDimensions.s,Offset+1,1)

 ; if that character is not a comma we haven't gone past the length
 ; of the string
 If Temp.s <> "," And (Offset <= Len(MapDimensions.s))
 ; then it must be a number, so we save it in the HoldString$
 HoldString.s = HoldString.s + Temp.s
 ; otherwise, it's either gone too far or it's the comma seperator
 Else
 ; if we've gone too far, then we know that the Map_Height is done
 If Offset > Len(MapDimensions.s)
 ; so we convert the current HoldString$ to an Int and assign it
 Map_Height = Val(HoldString.s)
 ; and make sure the While loop breaks
 EndOfString = 1
 ; it must be a comma, so that means our Map_Width value is loaded
 Else
 ; convert the current HoldString$ to an int and assign it
 Map_Width = Val(HoldString.s)
 ; reset the HoldString$ to blank so we can start loading Map_Height
 HoldString.s = ""
 EndIf

241

 EndIf
 ; increase the string position offset by 1 (to move to the next character)
 Offset = Offset + 1
 Wend

 ; we're done, so close the file!
 CloseFile(FilePtr)

 Dim Map.Map_Data(Map_Width,Map_Height)

 Map_Init(Map_Width,Map_Height)

 ProcedureReturn(0)
EndProcedure

Now you may consider this overkill for just determining the columns and
rows...and, frankly, you may be right. But my goal is to make it brain-
dead simple for the person calling these functions to use the map and
the function, so I don't mind overkill in my code.

Loading the Map Data
The second function is called Map_ReadData and its job is to take the
information it knows for the number of columns and rows (which it gets
from Map_ReadDimensions) and load in all of the image numbers into
the MapData array. Again, study this carefully:

;;
; Procedure: Map_LoadTextMap(...)
; Author: Krylar
; Description: This function loads in the actual map information.
; This function is for use with TEXT files only.
;
; Arguments:
; Map_Full_Path$ = Map file, including the full path
;;
Procedure Map_LoadTextMap(Map_Full_Path.s)

 ; first thing we do is open the file using a Pointer Variable (which
 ; is "FilePtr" in this case)
 FilePtr = ReadFile(#PB_Any,Map_Full_Path.s);
 ; read the Map dimensions line, but don't do anything with it...this
 ; is just to move to the map data line. Use the Map_ReadTextDimensions(...)
 ; function for getting the actual Map_Width/Map_Height, so you can DIM
 ; the Map_Data array appropriately
 MapDimensions.s = ReadString(FilePtr);

 ; set up our vars for array placements. The X will be for columns, and
 ; the Y will be for rows. The EndOfFile just let's us keep track of how
 ; far into the file we've gone.

242

 X.l=0
 Y.l=0
 EndOfFile.l = 0

 ; do this until we reach the end of the file
 While EndOfFile = 0

 ; read a line of data from the file and put it in the MapLine$ string
 MapLine.s = ReadString(FilePtr);

 ; make sure that the length of the line is more than 1 character
 If Len(MapLine.s) > 1

 ; set up our EndOfString var to be 0...this will help us keep
 ; track of the current MapLine$ string position
 EndOfString.l = 0

 ; This Offset var will let us keep track of our current position
 ; in the MapLine$ string
 Offset.l = 0

 ; until we reach the end of the MapLine$ string
 While EndOfString.l = 0

 ; let's first put the current position in the string into Temp$
 ; this is just 1 character from the string cause we use the Mid$(...)
 ; command to yank out that value
 Temp.s = Mid(MapLine.s,Offset.l + 1,1)

 ; if that character is not a comma we haven't gone past the length
 ; of the string
 If Temp.s <> "," And (Offset.l <= Len(MapLine.s))
 ; then it must be a number, so we save it in the HoldString$
 HoldString.s = HoldString.s + Temp.s
 ; otherwise, it's either gone too far or it's the comma seperator
 Else
 ; if we've gone too far, then we know that this line is done
 If Offset.l > Len(MapLine.s)
 ; fill in the number of the HoldString$ by converting it to an Int
 Map(X.l,Y.l)\TileNumber = Val(HoldString.s)
 ; reset the HoldString$ to a blank
 HoldString.s = ""
 ; exit the loop for *this* line (so we can read the next one)
 EndOfString.l = 1
 ; it must be a comma, so that means this column's value is loaded
 Else
 ; fill in the number of the HoldString$ by converting it to an Int
 Map(X.l,Y.l)\TileNumber = Val(HoldString.s)
 ; reset the HoldString$ to a blank
 HoldString.s = ""
 ; Increase the X (or Column) location for the Array

243

 X.l = X.l + 1
 EndIf
 EndIf
 ; add one to our string position offset
 Offset.l = Offset.l + 1
 Wend

 ; set X back to 0 (so we're back to column 0)
 X.l = 0
 ; add 1 to Y (so we move down 1 row in the array)
 Y.l = Y.l + 1
 ; if we've gone past the length of the file
 Else
 ; then tell the loop to stop cause we're done!
 EndOfFile.l = 1
 EndIf
 Wend

 ; make sure to close the file!
 CloseFile(FilePtr)

 ProcedureReturn(0)
EndProcedure

Binary-Based Map Files
Binary map files are a little different than text-based because you don’t
have to deal with delimiters (i.e. commas). But you’ll need to have
some way to create them other than just a standard text editor. Most
people create a Map Creator to do this type of thing.

A Map Creator is just a visual editor that allows you to place tiles and
such in a “mapping” fashion and then store that map file.

I’ve provided the K-2D MapMaker system. K-2D MapMaker will
load/store binary map files and such, and of course let you create and
edit maps with varying tile sets (though it is limited to 32x32 tiles). It’s
not overly fancy, but it’s good enough to start you working on your own
maps (and even creating additional ones for Migz to play on!).

Loading Binary Maps
We don’t need to have two separate functions for reading dimensions
and such because we’re only reading one integer at a time from the
map. This means that we just have to know what our map layout is.
I’m using the following format:

MapWidth
MapHeight
Tile1

244

Tile2
Tile3
Etc…

That’s it. So all we need to do is read in the first two integers, assign
them to the width and height for the map, and then just run through
and fill in the Map array. Here’s the code:

;;
; Procedure: Map_LoadBinaryMap(...)
; Author: Krylar
; Description: This function loads a binary map
;
; Arguments:
; Map_Full_Path$: Name to load
;;
Procedure Map_LoadBinaryMap(Map_Full_Path.s)

 ; first thing we do is open the file using a Pointer Variable (which
 ; is "FilePtr" in this case)
 FilePtr.l = ReadFile(#PB_Any,Map_Full_Path.s);

 If FilePtr.l = 0
 ProcedureReturn(-1)
 EndIf

 Dim Map.Map_Data(0,0)

 ; read in the map dimensions
 Map_Width = ReadLong(FilePtr);
 Map_Height = ReadLong(FilePtr);

 Dim Map.Map_Data(Map_Width,Map_Height)

 ; set up our vars for array placements. The X will be for columns, and
 ; the Y will be for rows. The EndOfFile just let's us keep track of how
 ; far into the file we've gone.
 X.l = 0
 Y.l = 0
 EndOfFile.l = 0

 ; for all of the rows (minus 1)
 For Rows.l = 0 To Map_Height - 1
 ; and for all the columns (minus 1)
 For Columns.l = 0 To Map_Width - 1
 ; read in the encrypted value
 Map(X.l,Y.l)\TileNumber = ReadLong(FilePtr)

 ; add 1 to X (so we move 1 column to the right in the array)
 X.l = X.l + 1

245

 Next
 ; set X back to 0 (so we're back to column 0)
 X.l = 0
 ; add 1 to Y (so we move down 1 row in the array)
 Y.l = Y.l + 1
 Next

 ; make sure to close the file!
 CloseFile(FilePtr)

 ProcedureReturn(0)
EndProcedure

Now our array has the appropriate tile numbers in there and they’re
ready to be displayed.

Saving Binary Maps
To save a binary map is even easier. Simply write out the width and
height and then run through the array, writing out each tile number as
you go. Here’s the code for saving binary maps.

;;
; Procedure: Map_SaveBinaryMap(...)
; Author: Krylar
; Description: This function saves a map in binary format
;
; Arguments:
; SaveFileName$: Name to save it as
;;
Procedure Map_SaveBinaryMap(SaveFileName.s)

 ; first open the file for writing. This *will* overwrite the existing file.
 FilePtr = CreateFile(#PB_Any,SaveFileName.s)

 ; write the Map_Width and Map_Height
 WriteLong(FilePtr,Map_Width)
 WriteLong(FilePtr,Map_Height)

 ; for all of the rows (minus 1)
 For Rows.l = 0 To Map_Height - 1
 ; and for all the columns (minus 1)
 For Columns.l = 0 To Map_Width - 1
 ; get the tilenumber
 TileNumber.l = Map(Columns.l,Rows.l)\TileNumber
 ; write it to the file
 WriteLong(FilePtr,TileNumber.l)
 Next
 Next

246

 ; close the file!
 CloseFile(FilePtr)

 ProcedureReturn(0)
EndProcedure

Showing a Loaded Map
After calling this function you should have all the data loaded into your
MapData array of Structure. Now it's just a matter of calling the
Map_ShowMap function. This function runs through the MapData array
structure, grabs the image number to show, and then calls PB's
DisplayTransparentSprite function with the TileList array element's
image for that image number.

This code can be used for non-scrolling maps as well as full scrolling
maps. Don’t worry though we’ll get into that in the next chapter!

Here's the code:

;;
; Procedure: Map_ShowMap(...)
; Author: Krylar
; Description: This function moves and displays a map starting at
; a user-defined top-left corner at whatever width/height the user
; wants. It will move N/S/E/W directions and do so at whatever
; distance (speed) the user needs.
;
; Arguments:
; XOffset = Where to start the left edge
; YOffset = Where to start the top edge
; Direction = 1-North, 2-South, 3-East, 4-West
; Distance = How far to move the map per call
; ShowWidth = How many columns to show (tiles)
; ShowHeight = How many rows to show (tiles)
; TileWidth = How Wide are the tiles for the map
; TileHeight = How High are the tiles for the map
; ShowBoxes = 0-No, 1-Show collision Points
;;
Procedure Map_ShowMap(XOffset.l,YOffset.l,Direction.l,Distance.l, 
  ShowWidth.l, ShowHeight.l,TileWidth, TileHeight,ShowBoxes.l)
 RowPosition = 0
 ColumnPosition = 0

 ; Which way are we scrolling the map?
 Select Direction
 Case 1 ; North
 ; First let's make sure that we're not already on the edge
 If Map_Y_Start > 0
 ; Start counting up to zero for our offset

247

 Map_Y_DisplayOffset = Map_Y_DisplayOffset + Distance
 ; if we hit or go past zero, subtract the amount over 0 from the
 ;TileHeight the user passed along
 ; and decrement our Map Y starting position
 If Map_Y_DisplayOffset > 0
 Map_Y_DisplayOffset = -(TileHeight) + Distance
 Map_Y_Start = Map_Y_Start - 1
 EndIf
 ; We want to show exactly the ShowHeight
 Map_ScrollHeight = Map_Y_Start + ShowHeight
 Else
 ; since we're already on Zero (top edge), just keep scrolling until the
 ; offset hits the edge too.
 If Map_Y_DisplayOffset < 0
 Map_Y_DisplayOffset = Map_Y_DisplayOffset + Distance
 EndIf
 ; We want to show one over the ShowWidth here so we don't end up
 ; with blinking edges
 Map_ScrollHeight = Map_Y_Start + ShowHeight + 1
 EndIf

 Case 2 ; South
 ; Verify that we've not gone too far down
 If Map_Y_Start < Map_Height - ShowHeight - 1 And Map_Y_Start >= 0
 ; Count down to the AdjustedTileSize (see above)
 Map_Y_DisplayOffset = Map_Y_DisplayOffset - Distance
 ; if we hit or go past the negative size, add that amount to the Tile size
 ; sent by the user and make it negative.
 If Map_Y_DisplayOffset < -(TileHeight)
 Map_Y_DisplayOffset = 0 - Distance
 ; Increment our Map position
 Map_Y_Start = Map_Y_Start + 1
 ; Do another sanity check to make sure we didn't run over. If we did, drop
 ; the Map position back 1, set the offset so it's on the edge (scrolling stops)
 If Map_Y_Start >= Map_Height - ShowHeight
 Map_Y_Start = Map_Y_Start - 1
 EndIf
 EndIf
 ; We want to show exactly the ShowHeight
 Map_ScrollHeight = Map_Y_Start + ShowHeight
 Else
 If Map_Y_Start > 0
 ; We must already be at the point where the right edge is showing, so
 ; just scroll until the offset hits the edge too.
 Map_Y_DisplayOffset = Map_Y_DisplayOffset - Distance
 ; if we hit or go past the negative size, add that amount
 ; to the Tile size sent by the user and make it negative.
 If Map_Y_DisplayOffset < -(TileHeight)
 Map_Y_DisplayOffset = -(TileHeight)
 EndIf
 EndIf

248

 EndIf

 Case 3 ; West (Left Arrow key)
 ; First let's make sure that we're not already on the edge
 If Map_X_Start > 0
 ; Start counting up to zero for our offset
 Map_X_DisplayOffset = Map_X_DisplayOffset + Distance
 ; if we hit or go past zero, subtract the amount over 0 from the TileWidth the
 ; user passed along and decrement our Map X starting position
 If Map_X_DisplayOffset > 0
 Map_X_DisplayOffset = -(TileWidth) + Distance
 Map_X_Start = Map_X_Start - 1
 EndIf
 ; We want to show exactly the ShowWidth
 Map_ScrollWidth = Map_X_Start + ShowWidth
 Else
 ; since we're already on Zero (left edge), just keep scrolling until the offset
 ; hits the edge too.
 If Map_X_DisplayOffset < 0
 Map_X_DisplayOffset = Map_X_DisplayOffset + Distance
 EndIf
 ; We want to show one over the ShowWidth here so we don't end up
 ; with blinking edges
 Map_ScrollWidth = Map_X_Start + ShowWidth + 1
 EndIf

 Case 4 ; East (Right Arrow Key)
 ; Verify that we've not gone too far right
 If Map_X_Start < Map_Width - ShowWidth - 1 And Map_X_Start >= 0
 ; Count down to the AdjustedTileSize (see above)
 Map_X_DisplayOffset = Map_X_DisplayOffset - Distance
 ; if we hit or go past the negative size, add that amount
 ; to the Tile size sent by the user and make it negative.
 If Map_X_DisplayOffset < -(TileWidth)
 Map_X_DisplayOffset = 0 - Distance
 ; Increment our Map position
 Map_X_Start = Map_X_Start + 1
 ; Do another sanity check to make sure we didn't run over. If we did, drop
 ; the Map position back 1, set the offset so it's on the edge (scrolling stops)
 If Map_X_Start >= Map_Width - ShowWidth
 Map_X_Start = Map_X_Start - 1
 EndIf
 EndIf
 ; We want to show exactly the ShowWidth
 Map_ScrollWidth = Map_X_Start + ShowWidth
 Else
 If Map_X_Start > 0
 ; We must already be at the point where the right edge is showing, so
 ; just scroll until the offset hits the edge too.
 Map_X_DisplayOffset = Map_X_DisplayOffset - Distance
 ; if we hit or go past the negative size, add that amount to the Tile size sent

249

 ; by the user and make it negative.
 If Map_X_DisplayOffset < -(TileWidth)
 Map_X_DisplayOffset = -(TileWidth)
 EndIf
 EndIf
 EndIf

 ; we're not moving the map, but the map still needs to be display. Check where
 ; we are on the map and display the proper width/height to avoid blinking.
 Default
 If Map_X_Start < Map_Width - ShowWidth
 Map_ScrollWidth = Map_X_Start + ShowWidth
 Else
 Map_ScrollWidth = Map_X_Start + ShowWidth - 1
 EndIf

 If Map_Y_Start < Map_Height - ShowHeight
 Map_ScrollHeight = Map_Y_Start + ShowHeight
 Else
 Map_ScrollHeight = Map_Y_Start + ShowHeight - 1
 EndIf
 If Distance = -1
 Map_X_DisplayOffset = 0
 Map_Y_DisplayOffset = 0
 EndIf
 EndSelect

 ; hook up our X, Y values to draw the images at the proper locations
 X = Map_X_DisplayOffset + XOffset
 Y = Map_Y_DisplayOffset + YOffset

 ; and then run through the Arrays and Draw stuff out!
 For Rows = Map_Y_Start To Map_ScrollHeight
 For Columns = Map_X_Start To Map_ScrollWidth
 TileNumber = Map(Columns,Rows)\TileNumber
 ; if the Tile isn't a -1, then draw it
 If TileNumber <> -1 And TileNumber <> 49
 DisplayTransparentSprite(Tile(TileNumber)\Image,X,Y)
 EndIf

 ; if the user wants to see the collision boxes, draw them here
 If ShowBoxes.l = 1
 ForEach(Wall())
 If Wall()\TileNumber = TileNumber
 If StartDrawing(ScreenOutput())
 DrawingMode(4)
 Box(X,Y,TileWidth,TileHeight,RGB(0,255,255))
 DrawText(X + 10,Y + 10,Str(TileNumber))
 StopDrawing()
 Break
 Else

250

 MessageRequester("Error!", "Unable to Draw to ScreenOutput()", 
  #PB_MessageRequester_Ok)
 EndIf
 EndIf
 Next
 ForEach(Ladder())
 If Ladder()\TileNumber = TileNumber
 If StartDrawing(ScreenOutput())
 DrawingMode(4)
 Box(X,Y,TileWidth,TileHeight,RGB(0,255,0))
 DrawText(X + 10,Y + 10,Str(TileNumber))
 StopDrawing()
 Break
 Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()",
  #PB_MessageRequester_Ok)
 EndIf
 EndIf
 Next

 EndIf
 ; increase our X position for tile drawing
 X = X + TileWidth
 Next
 ; reset the X position and increase the Y position
 X = Map_X_DisplayOffset + XOffset
 Y = Y + TileHeight
 Next
EndProcedure

By changing the values in MapColumnStart and MapRowStart you can
scroll the map.

Hopefully this will give you some insight on a very simple map file. I
also hope that you'll expand on this method and go for a much more
heavyweight version!

251

Chapter 21: Moving Sprites on Scrolling Maps

When you’re moving your player’s image (often referred to as a sprite)
around on your tiled map, you’ll certainly going to want some objects to
block paths. Maybe the player can’t cross the water, or there are walls
in the way, etc. Whatever you choose, there must be a way to prohibit
the player from crossing certain boundaries.

Additionally, if you have a large map, you should be able to have the
character move around the entire map. You need to be a little careful
here because of visual aesthetics. If you let the player run to the edge
of the screen before you begin scrolling, the player won’t have the
advantage of seeing what’s coming up.

Most side-scrolling games handle this by having the player’s character
sit in the dead center of the screen until that player hits an edge of the
map. From this point, there are a couple of ways to handle what
happens.

1) Instead of continuing to scroll the map, the player’s sprite will now
have the ability to move away from the center of the screen until such
time that the screen can again scroll.

2) There is a static backdrop so the map doesn’t look odd having its
edge sitting in the center of the screen.

We’ll be using the first method for the Migz game, so that’s what I’ll
cover in this chapter.

Player hits a wall
There are a number of ways to handle collision checks on walls and
other impassable objects. Here are a few:

1) Array-based checks: Since each tile is an element of an array (at
least in the examples provided in this book), you can find out whether
or not your player’s next move will cause him/her to spill over to a tile
that is a wall.

2) Pixel-based checks: You can use the SpritePixelCollision(…) command
to see if your player is literally hitting a wall.

3) Box-based checks: You can set up specific depths that your character
can overlap a wall before a collision is triggered.

I like the third option for 2D because it allows the most flexibility, so
that’s what I’m going to demonstrate here. Keep in mind that I’m
talking about the player overlaying the tiles and such, not bullet
collisions. That’s a totally different thing.

252

Here is a visual idea of what we’ll be doing. In figure 1 we have Migz
surrounded by a bounding box:

(Figure 21.1)

Look carefully at the above graphic. We have Migz with a rectangle
overlaying him. This box is not really in the sprite graphic, of course, it’s
just to give you an idea of what a bounding box is. In reality, all we
really want to know for the bounding box is what the X1, Y1, X2, Y2
values are for the box. We’re not even going to compare the actual
sprite image to the wall image at all!

What we’re going to do is find out where the player’s sprite is on the
screen and from there use basic math and IF…THEN…ENDIF statements
to determine if there is an overlap. So again, the box shown in that
graphic is only to convey the concept.

By using this method of collision detection, we have much more control
over how much to overlap our walls. Here’s an idea of what that would
look like:

(Figure 21.2)

See how the sprite overlays the wall up to the top of the bounding-box
shown in Figure 20.1? If we instead went with a method that checked
the entire player, we would get something more like this:

(Figure 21.3)

Since the top of the character hits the bottom of the wall, there would
be a collision, and that doesn’t look nearly as nice.

253

In order to handle this type of collision checking effectively, we’ll need
four total boxes for the character: top, bottom, left, and right. I’m going
to use an array to do this.

; create the Player collision array for bounding boxes on the player
Dim Map_PlayerCollisionArray(16)

Our sprite image is 32x32, which is why the numbers you see are 32 or
less. Now you could certainly compare outside of the image space if you
wanted to.

I’ve also set up a little function that initializes the bounding boxes for
the sprite. You can alter the little numbers as you see fit.

;;
; Procedure: Map_SetupPlayerBoundingBoxes()
; Author: Krylar
;
; sets up where the x1,y1,x2,y2 values are for the 4 boxes
; that make up the collision points on the player
;
; Arguments:
; Top, Bottom, Left, Right values of X1, Y1, X2, Y2 - Respectively
;
; Returns: n/a
;;
Procedure Map_SetupPlayerBoundingBoxes(TopX1.l,TopY1.l,TopX2.l,TopY2.l, 
  BottomX1.l,BottomY1.l,BottomX2.l,BottomY2.l, 
  LeftX1.l,LeftY1.l,LeftX2.l,LeftY2.l, 
  RightX1.l,RightY1.l,RightX2.l,RightY2.l)
 ; setup the top-box
 Map_PlayerCollisionArray(0) = TopX1.l
 Map_PlayerCollisionArray(1) = TopY1.l
 Map_PlayerCollisionArray(2) = TopX2.l
 Map_PlayerCollisionArray(3) = TopY2.l
 ; setup the bottom-box
 Map_PlayerCollisionArray(4) = BottomX1.l
 Map_PlayerCollisionArray(5) = BottomY1.l
 Map_PlayerCollisionArray(6) = BottomX2.l
 Map_PlayerCollisionArray(7) = BottomY2.l
 ; setup the Left-box
 Map_PlayerCollisionArray(8) = LeftX1.l
 Map_PlayerCollisionArray(9) = LeftY1.l
 Map_PlayerCollisionArray(10) = LeftX2.l
 Map_PlayerCollisionArray(11) = LeftY2.l
 ; setup the Right-box
 Map_PlayerCollisionArray(12) = RightX1.l
 Map_PlayerCollisionArray(13) = RightY1.l
 Map_PlayerCollisionArray(14) = RightX2.l

254

 Map_PlayerCollisionArray(15) = RightY2.l
EndProcedure

For our game, I’m going to call the above function as follows:

; Initialize the Player's bounding boxes
Map_SetupPlayerBoundingBoxes(7,0,24,1, 7,30,24,31, 7,0,8,31, 23,0,24,31)

Next we’ll want to run through our map and setup the walls. First we’ll
setup a structure to hold them all.

Structure Map_Walls
 TileNumber.l
 X.l
 Y.l
EndStructure

; setup a list for the map walls
Global NewList Wall.Map_Walls()

And we’re also going to setup one for our ladders since we’ll want Migz
to animate differently when he’s climbing.

Structure Map_Ladders
 TileNumber.l
 X.l
 Y.l
EndStructure

; setup a list for the map walls
Global NewList Ladder.Map_Ladders()

We’ll call our Map_AddWall and Map_AddLadder procedures to actually
populate the structures. To do this you need to know the actual
numbers for your walls and ladders, of course.

Procedure Map_AddWall(TileToAdd.l,TileWidth,TileHeight)
 X.l = 0
 Y.l = 0

 ; run through all of the map
 For Rows.l = 0 To Map_Height - 1
 For Columns.l = 0 To Map_Width - 1
 TileNumber.l = Map(Columns.l,Rows.l)\TileNumber
 ; see if the tile number is one we want designated as a wall

255

 If TileNumber.l = TileToAdd.l
 ; Add it to the Wall Type
 AddElement(Wall())
 Wall()\TileNumber = TileNumber.l
 Wall()\X = X.l
 Wall()\Y = Y.l
 EndIf
 X.l = X.l + TileWidth
 Next
 ; reset X to the beginning of the next row
 X.l = 0
 ; increase our Y drawing position by the Tile's Height
 Y.l = Y.l + TileHeight
 Next
EndProcedure

Procedure Map_AddLadder(TileToAdd.l,TileWidth,TileHeight)
 X.l = 0
 Y.l = 0

 ; run through all of the map
 For Rows.l = 0 To Map_Height - 1
 For Columns.l = 0 To Map_Width - 1
 TileNumber.l = Map(Columns.l,Rows.l)\TileNumber
 ; see if the tile number is one we want designated as a ladder
 If TileNumber.l = TileToAdd.l
 ; Add it to the ladder Type
 AddElement(Ladder())
 Ladder()\TileNumber = TileNumber.l
 Ladder()\X = X.l
 Ladder()\Y = Y.l
 EndIf
 X.l = X.l + TileWidth
 Next
 ; reset X to the beginning of the next row
 X.l = 0
 ; increase our Y drawing position by the Tile's Height
 Y.l = Y.l + TileHeight
 Next
EndProcedure

It’s important that you keep the X and Y values updating accordingly in
this function, as these values will designate where your walls are on the
map.

I wrote up a little function that calls Map_AddWall and Map_AddLadder
with all the pertinent numbers so I could keep the function as
encapsulated as possible.

256

Procedure SetupCollisionPoints(TileWidth,TileHeight)
 ; First let's set up the walls
 Map_AddWall(0,TileWidth,TileHeight)
 Map_AddWall(1,TileWidth,TileHeight)
 Map_AddWall(2,TileWidth,TileHeight)
 Map_AddWall(3,TileWidth,TileHeight)
 Map_AddWall(4,TileWidth,TileHeight)
 Map_AddWall(5,TileWidth,TileHeight)
 Map_AddWall(6,TileWidth,TileHeight)
 Map_AddWall(7,TileWidth,TileHeight)
 Map_AddWall(8,TileWidth,TileHeight)
 Map_AddWall(9,TileWidth,TileHeight)
 Map_AddWall(10,TileWidth,TileHeight)
 Map_AddWall(11,TileWidth,TileHeight)
 Map_AddWall(12,TileWidth,TileHeight)
 Map_AddWall(13,TileWidth,TileHeight)
 Map_AddWall(14,TileWidth,TileHeight)
 Map_AddWall(15,TileWidth,TileHeight)
 Map_AddWall(16,TileWidth,TileHeight)
 Map_AddWall(17,TileWidth,TileHeight)
 Map_AddWall(18,TileWidth,TileHeight)
 Map_AddWall(33,TileWidth,TileHeight)
 Map_AddWall(34,TileWidth,TileHeight)
 Map_AddWall(35,TileWidth,TileHeight)
 Map_AddWall(36,TileWidth,TileHeight)
 Map_AddWall(37,TileWidth,TileHeight)
 Map_AddWall(38,TileWidth,TileHeight)
 Map_AddWall(39,TileWidth,TileHeight)
 Map_AddWall(40,TileWidth,TileHeight)
 Map_AddWall(41,TileWidth,TileHeight)
 Map_AddWall(42,TileWidth,TileHeight)
 Map_AddWall(49,TileWidth,TileHeight)

 ; Then we'll add in our ladders
 Map_AddLadder(43,TileWidth,TileHeight)
 Map_AddLadder(44,TileWidth,TileHeight)

EndProcedure

Now that we have our walls and ladders in place and accounted for, we
just need a function that compares where the player’s sprite is in
relation to them. If any of the areas overlap, we simply stop the player’s
movement. The following function returns a value of 1 if an overlap is
detected, and a value of 0 if there is no overlap.

Procedure Map_CheckWallCollision(X.l,Y.l,TileWidth,TileHeight)

 ; do one calculation here for each absolute box position
 ; so we don't do them every itteration of our loop below

257

 BoxTopX1.l = X.l + Map_PlayerCollisionArray(0)
 BoxTopY1.l = Y.l + Map_PlayerCollisionArray(1)
 BoxTopX2.l = X.l + Map_PlayerCollisionArray(2)
 BoxTopY2.l = Y.l + Map_PlayerCollisionArray(3)
 BoxBottomX1.l = X.l + Map_PlayerCollisionArray(4)
 BoxBottomY1.l = Y.l + Map_PlayerCollisionArray(5)
 BoxBottomX2.l = X.l + Map_PlayerCollisionArray(6)
 BoxBottomY2.l = Y.l + Map_PlayerCollisionArray(7)
 BoxLeftX1.l = X.l + Map_PlayerCollisionArray(8)
 BoxLeftY1.l = Y.l + Map_PlayerCollisionArray(9)
 BoxLeftX2.l = X.l + Map_PlayerCollisionArray(10)
 BoxLeftY2.l = Y.l + Map_PlayerCollisionArray(11)
 BoxRightX1.l = X.l + Map_PlayerCollisionArray(12)
 BoxRightY1.l = Y.l + Map_PlayerCollisionArray(13)
 BoxRightX2.l = X.l + Map_PlayerCollisionArray(14)
 BoxRightY2.l = Y.l + Map_PlayerCollisionArray(15)

 ; run through all of the walls
 ForEach(Wall())
 XCollision.l = 0
 YCollision.l = 0

 ; grab the Type values to speed things up a bit
 WallX.l = Wall()\X
 WallY.l = Wall()\Y

 ; calculate the WallWidth and Height to speed things up
 WallWidth.l = WallX.l + TileWidth
 WallHeight.l = WallY.l + TileHeight

 ; check the top bounding box
 If BoxTopX1.l >= WallX.l And BoxTopX2.l <= WallWidth.l
 XCollision.l = 1
 EndIf
 If BoxTopY1.l >= WallY.l And BoxTopY2.l <= WallHeight.l
 YCollision.l = 1
 EndIf

 ; check the bottom bounding box
 If BoxBottomX1.l >= WallX.l And BoxBottomX2.l <= WallWidth.l
 XCollision.l = 1
 EndIf
 If BoxBottomY1.l >= WallY.l And BoxBottomY2.l <= WallHeight.l
 YCollision.l = 1
 EndIf

 ; check the left bounding box
 If BoxLeftX1.l >= WallX.l And BoxLeftX2.l <= WallWidth.l
 XCollision.l = 1
 EndIf

258

 If BoxLeftY1.l >= WallY.l And BoxLeftY2.l <= WallHeight.l

 YCollision.l = 1
 EndIf

 ; check the right bounding box
 If BoxRightX1.l >= WallX.l And BoxRightX2.l <= WallWidth.l
 XCollision.l = 1
 EndIf
 If BoxRightY1.l >= WallY.l And BoxRightY2.l <= WallHeight.l
 YCollision.l = 1
 EndIf

 ; if there is a collision on both the X and Y axis, return 1
 If XCollision.l = 1 And YCollision.l = 1
 ProcedureReturn(1)
 EndIf
 Next

 ; no hit so return 0
 ProcedureReturn(0)
EndProcedure

Screen and World Coordinates
The concept of screen and world coordinates can be tricky, so let’s cover
that first.

Screen coordinates are where on the screen the player (or some other
object) will be displayed.

World coordinates denote the X, Y position the player is in the world. So
while the player may be sitting in the center of the screen, he may be
near the bottom right of a big map. This is important because the map
location of the player will indicate what tiles are shown, where the
enemies or traps are, etc.

Imagine that we have a map that is 100 tiles wide by 100 tiles tall. Each
tile is 32x32, so in essence we have a map that is 3200 pixels by 3200
pixels, right? Now the section of the screen we’re going to use to display
the map (known as a “view port”) is 20 wide by 15 high. Taking our
32x32 images, this means that we’ll only be seeing 640 pixels on the X-
axis and 480 pixels on the Y-axis. Knowing this, we need a way in which
to display the rest of the pixels as we move across the map. Since we
are starting off at pixel 0,0, we know that one move to the right would
put us at pixel 1,0. But if we move the player along with the pixel
movement, the player’s sprite will soon leave the screen.

So instead, we use two coordinates. To determine which tiles of the
map, which bad guys or NPC (non-player characters), etc., are drawn,

259

we use the world coordinates. To actually draw the player and the
currently visible map tiles we use the screen coordinates. There is a
little bit of calculation involved to get this all to work. First, though, let’s
talk about the concept behind scrolling a map.

Scrolling a Map (Theory)
I once had tons of trouble understanding the concept behind how a map
scrolls, but then I read an explanation that made it all fall together. I’ll
try to re-tell that here!

The white box in Figure 20.4 is to denote the view port area. This is the
area we are going to actually display to the user. The upper left corner
of the map is 0,0, but the upper left corner of the view port (white box)
is around 200,100. This means that our world coordinate is 200,100.

(Figure 21.4)

So the actual view port will show this:

260

(Figure 21.5)

Now all you have to do is imagine moving that white box around pixel-
by-pixel (or 4 pixels or whatever), redrawing the view port data from
the new world coordinates, and bam…you have the concept of 2D map
scrolling under your hat! Hopefully that will also help you to better
understand the screen and world coordinate concept.

Edge-Independent Scrolling
Edge Independent Scrolling is a term that I made up (I think). The
object is to scroll the map only until the player reaches a point in the
world where the edge is at the side of the view port. From here the
player moves independently of the map.

(Figure 21.6)

261

Here we see our player is sitting in the center of the view port, but we
can see the edge of the map. So what happens when the player moves
to the left?

(Figure 21.7)

Notice that the map has not changed, but the player’s position has. The
map edges used to move all the way to the player, but now when the
player reaches an edge, the map stays put and the player will move
instead. Here is another view to demonstrate this:

(Figure 21.8)

See how the player is now in the upper-left and not in the center? This
is the concept that I’m trying to get across.

When the player gets back to a point that he’s crossing the center of the
screen, from either the X-axis or the Y-axis, the map will scroll
accordingly.

262

Scrolling Code
The following code pieces are brand new, but they need a little
description and theory talk.

First off, there is more than one way to scroll a map. The method I'm
going to present is pretty simple (in my opinion) and it runs at a nice
speed.

The basic theory goes something like this:

1) We have a tile size, in this case it's 32x32.

2) We want to scroll the map at a certain speed. I use 4 pixels per step.
You can easily change this to whatever you want, but this code will
assume that you are using a value that's evenly divisible into 32. Feel
free to alter the code to your heart's content, of course.

3) Each step that the player makes will change an offset value based on
the distance of each step. So, if we just launched the game, the XOffset
value would be a whopping 0. One step to the right and it becomes -4.
Why MINUS? Because we want that left-most tile to start displaying at
-4 now. This will make the tile display partially outside of the view port.

4) We display all the tiles in the view port + 1. Huh? In other words, if
we only display the exact number of tiles that the view port will hold,
we'll see the right-most column be nothing but empty space until we
clear the left most tile completely. We don't want that. So where the
view port may hold exactly 20 tiles, we want to DRAW 21. Don't worry,
PureBasic will automagically clip the tiles.

5) Update the WorldX and WorldY coordinates of the player to keep
track where he is. This is important because we're going to be checking
the WorldX, WorldY values for collisions. We don't check the ScreenX
and ScreenY for this because they don't change.

6) If we register a collision, no biggie, just reset the World value back to
what it was before we moved a step.

That's pretty much it.

Here's the Move Player code for review:

Procedure MovePlayer(Direction.l,Distance.l,TileWidth,TileHeight)

 MoveMapX.l = 0
 MoveMapY.l = 0
 Select Direction.l
 ; Standing still
 Case 0

263

 ; If we're at an edge, let the sprite walk independently of the scroll
 If PlayerWorldX <= ScreenX Or PlayerWorldX > Map_Pixel_Width - ScreenX
 If PlayerWorldX <= ScreenX
 DrawPlayerX = PlayerWorldX
 Else
 DrawPlayerX = ViewPortWidth - (Map_Width * TileWidth - PlayerWorldX)
 EndIf
 Else
 ; We'renot be at an edge, so we want to keep the sprite in the middle
 ; and let the program know we're good to scroll
 DrawPlayerX = ScreenX
 MoveMapX.l = 1
 EndIf

 ; If we're at an edge, let the sprite walk independently of the scroll
 If PlayerWorldY <= ScreenY Or PlayerWorldY > Map_Pixel_Height - ScreenY
 If PlayerWorldY <= ScreenY
 DrawPlayerY = PlayerWorldY
 Else
 DrawPlayerY = ViewPortHeight - (Map_Height * TileHeight - PlayerWorldY)
 EndIf
 Else
 ; We must not be at an edge, so we want to keep the sprite in the middle
 ; and let the program know we're good to scroll
 DrawPlayerY = ScreenY
 MoveMapY.l = 1
 EndIf

 ; Going Up
 Case 1
 ; save the current World value
 OldY.l = PlayerWorldY
 ; calculate the new value based on the distance
 PlayerWorldY = PlayerWorldY - Distance.l
 ; make sure the new value is >= 0
 If PlayerWorldY < 0
 PlayerWorldY = 0
 EndIf

 ; See if there's a collision
 If Map_CheckWallCollision(PlayerWorldX,PlayerWorldY,TileWidth, 
  TileHeight) = 1
 ; If so, reset the PlayerWorldY value
 PlayerWorldY = OldY.l
 Else
 ; Otherwise, see where we are on the map
 ; If we're at an edge, let the sprite walk independently of the scroll
 If PlayerWorldY < ScreenY Or PlayerWorldY >= Map_Pixel_Height - ScreenY
 If PlayerWorldY <= ScreenY
 DrawPlayerY = PlayerWorldY
 Else

264

 DrawPlayerY = ViewPortHeight - (Map_Height * TileHeight - PlayerWorldY)
 EndIf
 Else
 ; We must not be at an edge, so we want to keep the sprite in the middle
 ; and let the program know we're good to scroll
 DrawPlayerY = ScreenY
 MoveMapY.l = 1
 EndIf
 EndIf

 ; Going Down
 Case 2
 OldY.l = PlayerWorldY
 PlayerWorldY = PlayerWorldY + Distance.l
 If PlayerWorldY > Map_Height * TileHeight - TileHeight
 PlayerWorldY = Map_Height * TileHeight - TileHeight
 EndIf
 ; See if there's a collision
 If Map_CheckWallCollision(PlayerWorldX,PlayerWorldY,TileWidth, 
  TileHeight) = 1
 ; If so, reset the PlayerWorldY value
 PlayerWorldY = OldY.l
 Else
 ; Otherwise, see where we are on the map
 ; If we're at an edge, let the sprite walk independently of the scroll
 If PlayerWorldY <= ScreenY Or PlayerWorldY > Map_Pixel_Height - ScreenY
 If PlayerWorldY <= ScreenY
 DrawPlayerY = PlayerWorldY
 Else
 DrawPlayerY = ViewPortHeight - (Map_Height * TileHeight - PlayerWorldY)
 EndIf
 Else
 ; We must not be at an edge, so we want to keep the sprite in the middle
 ; and let the program know we're good to scroll
 DrawPlayerY = ScreenY
 MoveMapY.l = 1
 EndIf
 EndIf

 ; Going Left
 Case 3
 OldX.l = PlayerWorldX
 PlayerWorldX = PlayerWorldX - Distance.l
 If PlayerWorldX < 0
 PlayerWorldX = 0
 EndIf
 ; See if there's a collision
 If Map_CheckWallCollision(PlayerWorldX,PlayerWorldY,TileWidth, 
  TileHeight) = 1
 ; If so, reset the PlayerWorldX value

265

 PlayerWorldX = OldX.l
 Else
 ; Otherwise, see where we are on the map
 ; If we're at an edge, let the sprite walk independently of the scroll
 If PlayerWorldX < ScreenX Or PlayerWorldX >= Map_Pixel_Width - ScreenX
 If PlayerWorldX < ScreenX
 DrawPlayerX = PlayerWorldX
 Else
 DrawPlayerX = ViewPortWidth - (Map_Width * TileWidth - PlayerWorldX)
 EndIf
 Else
 ; We must not be at an edge, so we want to keep the sprite in the middle
 ; and let the program know we're good to scroll
 DrawPlayerX = ScreenX
 MoveMapX.l = 1
 EndIf
 EndIf

 ; Going Right
 Case 4
 OldX.l = PlayerWorldX
 PlayerWorldX = PlayerWorldX + Distance.l
 If PlayerWorldX > Map_Width * TileWidth - TileWidth
 PlayerWorldX = Map_Width * TileWidth - TileWidth
 EndIf
 ; See if there's a collision
 If Map_CheckWallCollision(PlayerWorldX,PlayerWorldY,TileWidth, 
  TileHeight) = 1
 ; If so, reset the PlayerWorldX value
 PlayerWorldX = OldX.l
 Else
 ; Otherwise, see where we are on the map
 ; If we're at an edge, let the sprite walk independently of the scroll
 If PlayerWorldX <= ScreenX Or PlayerWorldX > Map_Pixel_Width - ScreenX
 If PlayerWorldX <= ScreenX
 DrawPlayerX = PlayerWorldX
 Else
 DrawPlayerX = ViewPortWidth - (Map_Width * TileWidth - PlayerWorldX)
 EndIf
 Else
 ; We must not be at an edge, so we want to keep the sprite in the middle
 ; and let the program know we're good to scroll
 DrawPlayerX = ScreenX
 MoveMapX.l = 1
 EndIf
 EndIf
 EndSelect

 ; if either X or Y is scrollable, return 1 to let the caller know
 If MoveMapX.l = 1 Or MoveMapY.l = 1
 ProcedureReturn(1)

266

 Else

 ProcedureReturn(0)
 EndIf
EndProcedure

Note that the above code is in our main program, not the "maplib.pb"
one. This is because how we move the player will be up to us, not up to
a map module.

Here is the set of calls made that setup scrolling:

 ; move the player and see if we should scroll the map or not
 MoveMap.l = MovePlayer(Direction.l,#MoveDistance,#TileWidth,#TileHeight)
 ; if the player is standing still
 If Direction.l = 0
 ; show the map, but don't scroll it
 Map_ShowMap(0,0,0,0,#MapColumns,#MapRows,#TileWidth,#TileHeight, 
  ShowCollisionPoints)
 Else
 ; if we want to scroll the map, do that here
 If MoveMap.l = 1
 Map_ShowMap(0,0,Direction.l,#MoveDistance,#MapColumns,#MapRows, 
  #TileWidth,#TileHeight, ShowCollisionPoints)
 Else
 ; otherwise, just show it
 Map_ShowMap(0,0,0,0,#MapColumns,#MapRows,#TileWidth,#TileHeight, 
  ShowCollisionPoints)
 EndIf
 EndIf

You can see that I'm showing the map in all instances. If I didn't, we'd
see sporadic blank screens with our little space hero on them…a sort of
purgatory, if you will. But it's not always scrolling so we need to make
sure to layout the Map_ShowMap function to handle that, which we did
in Chapter 20.

More on Coordinate Systems
We touched on the basics of Screen and World coordinates, but in order
to effectively use them in our game, we’ll need to hone in a bit more on
them.

Screen Vs. World
In order to get a better understanding of how these systems differ, I will
use a few screen shots from the Migz Callo game:

267

(Figure 21.9)

Here we see the upper-left position of the map. The top-left is literally
0,0 in the map array. Migz is sitting at position 3,5 in the map array, but
his pixel position is 96,160. In order to determine Migz’ pixel position, I
just multiplied by our tile size, which is 32. So, X = 3 * 32 = 96, Y = 5 *
32 = 160. Thus, the top-left pixel of Migz’ sprite is at 96,160.

In our game, we’ve set our view port to show 24 columns of tiles and 15
rows.

; determine how many columns/rows to draw per refresh
#MapColumns = 24 ; how many columns?
#MapRows = 15 ; how many rows?

Again, since our tiles are 32x32, this means that the view port will show
24x32 = 768 pixels on the X coordinate and 15x32 = 480 pixels on the
Y coordinate. But, our maps can be quite a bit larger than that.

For example, the first level of the demo game is 40 columns wide and
20 rows high. Translation:

40 x 32 = 1280pixels
20 x 32 = 640pixels

…and we could easily go much larger than that.

This is where screen and world coordinates come into play though.

Imagine that we move Migz toward the right side of the map:

268

(Figure 21.10)

Okay, so now he stands at around 25 on the X coordinate. The problem
is that 25x32 = 800. We’re only able to show 768pixles in our view port.
So, in essence, Migz shouldn’t be showing up at all! So, why is he? And
why is he showing up in the center of the view port?

Glad you asked. This is because when Migz hits that wondrous middle-
of-the-view-port location, we no longer update his Screen Coordinate.
We only update his World Coordinate. So, in the World he is at position
800, but on the Screen (where we actually draw the little fellow) he is at
position 384. Using this method allows us to keep the map scrolling
around while making sure our character never disappears from it.

But we also keep an eye on the World Coordinate because once Migz
has passed a certain point in the World (the entire map), we want him
to resume walking independently.

Robots, HealthPaks, and Lasers…oh my!
The robots and lasers can’t be handled the same as Migz because
they’re not the focus points of the game. They have to appear to be in
their own little space on the map, independent of Migz entirely.

Yet, if we don’t take a few precautions, we’ll end up with lasers going
faster or slower than they should, robots floating up and down the
screen, and healthpaks being ever out of reach.

Fortunately, this is pretty easy to deal with.

The next logical question we should ask is why the robots, lasers, and
healthpaks have both Screen and World coordinates.

The reason for this is pretty much the same as the reason that Migz has
both: a robot that walks around in WorldX of 955 can’t be drawn using
DisplayTransparentSprite at that location because it won’t be seen. So

269

we have to somehow translate that robot’s World coordinate to one that
will be visible to Migz when the robot is within range.

So while the robot’s World coordinates are applicable only to the robot,
its Screen coordinates are updated by Migz’ movements.

First we check to see if the map is even moving. If it’s not we just let
the robot’s move whatever distance they normally do; if it is then we
need to make sure to compensate for Migz’ movement as well.

If MoveMap = 1
 Select Direction
 Case 1
 Robot()\ScreenY = Robot()\ScreenY + #MoveDistance
 Case 2
 Robot()\ScreenY = Robot()\ScreenY - #MoveDistance
 Case 3
 Robot()\ScreenX = Robot()\ScreenX + #MoveDistance
 Case 4
 Robot()\ScreenX = Robot()\ScreenX - #MoveDistance
 EndSelect
EndIf

What this code does is check which direction Migz is moving and then
just does an adjustment on the robot’s Screen X, Y position using the
distance that we’ve set the MoveDistance constant to. That’s it!

The code for the lasers and healthpaks has the same layout.

For fun, comment those bits out of the code and watch all the joyous
results you end up getting!

Lot's in this chapter, I know. Note that this chapter is the biggest piece
of this entire game, if not the entire book. So really take the time to get
this stuff down. Hopefully the comments and a little study will help you
through that though, especially since you already have the knowledge of
previous chapters to guide you.

270

Chapter 22: Simple AI

Artificial Intelligence demands a book on its own, but there are little
things that one can do in a game that will make things at least appear
to be alive and somewhat independent.

Robots Doing Stuff
In most side-scrollers the NPC’s (non-player characters…bad guys,
typically) are somewhat dumb. They tend to walk from point A to point
B and the player has to jump over them or shoot them. I didn’t want to
go that route as I thought it a bit too simple, even for the likes of our
demo game.

So, instead I set about making the robots evolve just mildly above that
level of intellect. Not much, mind you, but enough to make things more
interesting.

The first thing I did was to give each robot an ActionTimer. The object of
this timer is to inform the robot that, when the timer goes off, it is to
make a decision as to what to do next. The list of things it can decide is
as follows:

 Stand still, facing left
 Stand still, facing right
 Walk left until the ActionTimer clicks or until hitting a minimum

X point
 Walk right until the ActionTimer clicks or until hitting a

maximum X point

This happens to be immensely effortless to accomplish.

; pick a random direction and go
Robot()\Direction = Random(3) + 1

All we do is tell PB to choose a random number from 1 to 4 and assign it
over whatever currently sits in the Direction structure entity. During
each loop we merely process that information for each robot and move
them accordingly.

First, take a look at the code for when the robot is just standing sill,
facing left.

Select Robot()\Direction
 Case 1 ; still, facing left
 ; if he's been hit or is dead
 If Robot()\Hit > 0 Or Robot()\Dead > 0

271

 ; if dead
 If Robot()\Dead > 0
 ; play the death animation until he's completely bye bye
 Robot()\Frame = Robot()\Frame - 1
 If Robot()\Frame < 52
 Robot()\Dead = -1
 EndIf
 ; otherwise, just show the hit
 Else
 Robot()\Frame = 55
 Robot()\Hit = Robot()\Hit - 1
 EndIf
 Else ; if he's neither hit nor dead, update the frames as usual
 Robot()\Frame = Robot()\Frame - 1
 If Robot()\Frame < 0
 Robot()\Frame = 7
 EndIf
 If Robot()\Frame > 7
 Robot()\Frame = 0
 EndIf
 EndIf

Notice that we first check to see if he’s been hit or has died before doing
anything else. This is key because it would look odd to have a walking
robot that’s, um, deactivated.

Now here is the case for when the robot is walking to the right:

Case 4 ; Right
 If Robot()\Hit > 0 Or Robot()\Dead > 0
 If Robot()\Dead > 0
 Robot()\Frame = Robot()\Frame + 1
 If Robot()\Frame > 51
 Robot()\Dead = -1
 EndIf
 Else
 Robot()\Frame = 48
 Robot()\Hit = Robot()\Hit - 1
 EndIf
 Else
 Robot()\Frame = Robot()\Frame + 1
 If Robot()\Frame < 32
 Robot()\Frame = 32
 EndIf
 If Robot()\Frame > 39
 Robot()\Frame = 32
 EndIf
 OldX = Robot()\WorldX
 Robot()\WorldX = Robot()\WorldX + #MoveDistance
 If Robot()\WorldX > Robot()\MaximumX

272

 Robot()\WorldX = OldX
 Robot()\Direction = 2
 Else
 Robot()\ScreenX = Robot()\ScreenX + #MoveDistance
 EndIf
 EndIf

Following along with that, you’ll see that the only major change from
walking and standing is that you have to update the WorldX position and
check it against the maximum allowable X (or minimum, if walking left).
Don’t forget to the update the ScreenX position too as this variable
keeps track of where to draw the robot on the screen in relation to the
player.

Now, I know that doesn’t seem like much, but when you’re playing the
game you will get the feeling of independent thought of these silly little
bots. Stupid? Certainly. But, they’re not just standing around playing
with their capacitors either.

There are things that can keep a robot from doing stuff.
 The robot gets shot. This can halt its firing of its weapon, or

make it freeze in place momentarily.
 Migz gets nuked. The robots are smart enough to know there’s

no sense in firing lasers at a dead guy.

Robots Firing
If Migz happens to be within range, the robot will take it that its proper
decision would be to face Migz and shoot at him.

Step one is for the robot to see if Migz is even on the same Y-plane.

If Robot()\WorldY >= PlayerWorldY And Robot()\WorldY <= PlayerWorldY + 25

If so, then the robot wants to see if it should even both firing at the
spaceman, since it knows that lasers beams on travel so far in this
wacky environment.

If Robot()\WorldX > PlayerWorldX And Robot()\WorldX - PlayerWorldX < 300

That will check to see if Migz is within 300 units to the left of the robot.
If so, it’s shootin’ time.

If Robot()\Firing = 1
 ; see which way he's facing
 Select Robot()\Direction

273

 Case 1
 ; and update the frames accordingly
 Robot()\Frame = Robot()\Frame - 1
 If Robot()\Frame < 16
 Robot()\Frame = 7
 Robot()\Firing = 0
 Robot()\ActionTimer = Current_Time
 Robot()\ActionTimeout = 500
 EndIf
 ; when the robot hits the middle frame, add in the laser
 If Robot()\Frame = 19
 AddLaser(1,Robot()\ScreenX,Robot()\ScreenY+11,Robot()\WorldX, 
  Robot()\WorldY,1, #TileWidth, #TileHeight)
 EndIf
 Case 2
 Robot()\Frame = Robot()\Frame + 1
 If Robot()\Frame > 47
 Robot()\Frame = 24
 Robot()\Firing = 0
 Robot()\ActionTimer = Current_Time
 Robot()\ActionTimeout = 500
 EndIf
 ; when the robot hits the middle frame, add in the laser
 If Robot()\Frame = 44
 AddLaser(1,Robot()\ScreenX+32,Robot()\ScreenY+11,Robot()\WorldX+32, 
  Robot()\WorldY,2, #TileWidth,#TileHeight)
 EndIf
 EndSelect

If you study that little bit, something interesting should pop out at you.
We don’t actually add in the laser shot until a certain frame in the
animation is hit. Additionally, we add a bit to the X coordinate of where
the laser is fired from, if we are facing right. Why?

We add the laser animation to a particular frame because it would look
odd for the laser to fire any other time. If you look at the robot firing
frames, you’ll see that one of them sits directly between two flashes.
That’s the frame we want to add the laser on because it will look the
most realistic.

(Figure 22.1)

274

We move the laser over on the X coordinate a bit when the robot faces
right because otherwise it will look like it’s firing from his backside
instead of from the weapon’s nozzle.

Migz Gets Bored
One of the things that I’ve seen time and again in little games such as
ours is the main character getting fidgety. So you, the player, put Migz
in a nice safe spot and decide to go grab something to drink. When you
come back Migz appears to have fallen asleep! If you keep your hands
off the keys for a bit, you’ll actually see Migz give you a couple of
curious glances, a couple of yawns, and then he’ll finally fall asleep.
Face it, spacemen get bored easily when neglected.

So how’s this done? We use timers, flags, and some nice animated
frames.

Here’s the set of frames for when Migz gets fidgety and starts to yawn
and tire.

(Figure 22.2)

Obviously we want him to fidget a bit before yawning, and then we want
him to yawn a couple of times before falling asleep. Here’s the code for
that:

; make sure the player's not fidgeting
If Current_Time > Fidget_Timer + Fidget_Interval And PlayerFidgeting = 0
 ; up the fidget level a bit...player's getting bored!
 Fidget_Level = Fidget_Level + 1
 If Fidget_Level > 7
 Fidget_Level = 7
 EndIf
 ; do a little fidget move
 If Fidget_Level > 0 And Fidget_Level < 3
 Fidget_Speed = 250
 PlayerFrame = 7
 Fidget_Interval = 2000
 EndIf
 ; yawn a bit
 If Fidget_Level > 2 And Fidget_Level < 5
 Fidget_Speed = 500
 PlayerFrame = 0
 Fidget_Timer = Current_Time
 Fidget_Interval = 2000
 EndIf
 ; yawn a smidgeon longer

275

 If Fidget_Level > 4 And Fidget_Level < 7
 Fidget_Speed = 1250
 PlayerFrame = 0
 Fidget_Interval = 2000
 EndIf
 ; okay, that's it...you're asleep
 If Fidget_Level >= 7
 Fidget_Speed = 250
 PlayerFrame = 111
 Fidget_Interval = 100
 PlayerSleeping = 1
 EndIf
 ; player is definitely fidgeting
 PlayerFidgeting = 1
EndIf

Okay, so we’ve set some fidget levels, but now we need to animate
them.

; The player character is fidgeting
If PlayerFidgeting = 1
 ; just do a little fidget, crack the knuckles
 If Fidget_Level > 0 And Fidget_Level < 3
 ; assuming it's the right time of course
 If Current_Time > Frame_Timer + Fidget_Speed
 PlayerFrame = PlayerFrame - 1
 If PlayerFrame < 3
 PlayerFrame = 7
 PlayerFidgeting = 0
 ; reset the frame timer
 Fidget_Timer = Current_Time
 EndIf
 ; reset the frame timer
 Frame_Timer = Current_Time
 EndIf
 EndIf

 ; same as above
 If Fidget_Level > 2 And Fidget_Level < 5
 If Current_Time > Frame_Timer + Fidget_Speed
 PlayerFrame = 0
 ; reset the frame timer
 Fidget_Timer = Current_Time
 ; reset the frame timer
 Frame_Timer = Current_Time
 PlayerFidgeting = 0
 EndIf
 EndIf

 ; same as above

276

 If Fidget_Level > 4 And Fidget_Level < 7
 If Current_Time > Frame_Timer + Fidget_Speed
 PlayerFrame = PlayerFrame + 1
 If PlayerFrame > 1
 PlayerFrame = 0
 PlayerFidgeting = 0
 ; reset the frame timer
 Fidget_Timer = Current_Time
 EndIf
 ; reset the frame timer
 Frame_Timer = Current_Time
 EndIf
 EndIf

Migz Falls Asleep
Okay, so he’s been fidgety and he’s been yawning. The next logical
progression would be to let the little fellow sleep:

(Figure 22.3)

Check out that not only do we put him in sleep mode, we also add a
little snoring sound effect just for kicks.

; The player character is sleeping
If PlayerSleeping = 1
 If Current_Time > Snore_Timer + Snore_Interval
 MyPlaySound(7)
 Snore_Timer = Current_Time
 EndIf

 If Current_Time > Frame_Timer + Fidget_Speed
 PlayerFrame = PlayerFrame + 1
 If PlayerFrame > 103
 PlayerFrame = 96
 EndIf
 ; reset the frame timer
 Frame_Timer = Current_Time
 EndIf
EndIf

Now, again, there are many things that you can do using AI in your
games, including path-finding, sneaking up, hiding, playing dead,
running away, chasing a player, etc. But most of these things are a bit
beyond the scope of this game and book as most side-scrollers are very
simple in this realm.

277

However, don’t let that stop you from pursuing these things. Path-
finding is extremely important in many games these days, and you’ll
need to know how to go about using it effectively (or getting a tool that
will aid you) in order to accomplish it fairly.

With a little effort you should be able to take the code from Migz Callo
and make those robots smarter. Add the ability to climb the ladders
(which will require some artwork) or chase after Migz when he tries to
run away. Or maybe set up a portal system and a panic call for the
robots. When a robot is near its end it tries to get to a portal to jump to
a different spot on the level. It runs away, as it were. These things
should be relatively easy to accomplish if you use your imagination and
a bit of what we’ve already learned here.

278

Chapter 23: Putting It All Together

Well, we’ve gone from knowing next to nothing of making a 2D scrolling
—or even how to program at all—to being able to build up a nice little
fun futuristic world for Migz and his pals to play about in.

We’ve got the art, the sounds, the music, and even the map editor. And,
of course, we’ve got the full source code for the game, which you should
certainly modify to including things like jumping, falling, chasing,
crouching, crawling, and anything else you can think up.

So now we have to put it all together.

The main loop
The key to making any game work properly is to have a nice main loop
that it runs from. If you put everything into one long loop, without
separating into functions where you can, you’ll end up finding it more
and more complicated to update and fix bugs in your game.

Here is our main loop for Migz:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; MAIN GAME LOOP
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Repeat
 ; clear the screen
 ClearScreen(ClearColor)

 ; draw the backdrop image
 DisplaySprite(BackDrop_Image,2,2)

 ; Get the current time so we only call the ElapsedMilliseconds() once per loop
 Current_Time = ElapsedMilliseconds()

 ; check for any movement keys being pressed (assuming we're not already firing!)
 If PlayerFiring = 0 And StartingLevel = 0
 ; see what direction we're moving, or 0 if nothing's being hit
 Direction.l = CheckMovementKeys()
 EndIf

 ; check the keyboard here to see if the firing/activation key has been hit too
 ExamineKeyboard()

 ; see if the user wants a screen shot or not
 TakeScreenie = 0
 If KeyboardPushed(#PB_Key_F10)
 ; if so set the flag for use after the flip
 TakeScreenie = 1

279

 EndIf

 ; Check for firing/activation
 If KeyboardPushed(#PB_Key_Space) And PlayerHitAnimation = 0 And 
  PlayerDead = 0 And StartingLevel = 0
 ; if there are still Robots, then we must be shooting
 If ListSize(Robot()) > 0
 ; Make sure we're not on a ladder
 MTile = Map_CheckOnLadder(PlayerWorldX,PlayerWorldY, 
  #TileWidth,#TileHeight)
 ; We're not on a ladder...
 If MTile = 0
 ; has enough time lapsed since our last firing?
 If Current_Time > Firing_Timer + Firing_Delay
 ; set the player firing flag to 1
 PlayerFiring = 1
 ; force the direction to 0 so no running or anything can happen
 Direction = 0
 ; set the start firing frame based on which way the player is facing
 If PlayerFacing = 3
 PlayerFrame = 31
 Else
 PlayerFrame = 64
 EndIf
 ; reset our firing time
 Firing_Timer = Current_Time
 EndIf
 EndIf
 Else ; the robots must all be dead...why shoot when there's no robots?

 ; See if we're at the exit point
 If PlayerWorldX >= PlayerExitX-5 And PlayerWorldY >= PlayerExitY-5 And 
  PlayerWorldX <= PlayerExitX+37 And PlayerWorldY <= PlayerExitY+37
 ; if so, we're done with this level, so go to the next one
 Current_Level = Current_Level + 1
 If Current_Level > 3
 Current_Level = 1
 EndIf
 ; play the exiting level sound
 MyPlaySound(9)
 ; start up a new level!
 StartLevel(Current_Level,#TileWidth,#TileHeight)
 EndIf
 EndIf
 EndIf

 ; Check to see what frame we should display in our next player draw
 AnimatePlayer(Current_Time,#Animation_Speed,Direction,#TileWidth,#TileHeight)

 ; move the player and see if we should scroll the map or not

280

 MoveMap.l = MovePlayer(Direction.l,#MoveDistance,#TileWidth,#TileHeight)
 ; if the player is standing still
 If Direction.l = 0
 ; show the map, but don't scroll it
 Map_ShowMap(0,0,0,0,#MapColumns,#MapRows,#TileWidth,#TileHeight, 
  ShowCollisionPoints)
 Else
 ; if we want to scroll the map, do that here
 If MoveMap.l = 1
 Map_ShowMap(0,0,Direction.l,#MoveDistance,#MapColumns,#MapRows, 
  #TileWidth,#TileHeight,ShowCollisionPoints)
 Else
 ; otherwise, just show it
 Map_ShowMap(0,0,0,0,#MapColumns,#MapRows,#TileWidth,#TileHeight, 
  ShowCollisionPoints)
 EndIf
 EndIf

 ; Move the health paks
 MoveHealthPaks(Current_Time,MoveMap.l,Direction.l,#TileWidth,#TileHeight)

 ; Move the robots
 MoveRobots(Current_Time,MoveMap.l,Direction.l,#TileWidth,#TileHeight)

 ; Move the lasers
 MoveLasers(Current_Time,MoveMap.l,Direction.l,#TileWidth,#TileHeight)

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; Drawing the player sprite
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; Make sure that the player's not dead and that we're not at the starting screen
 If PlayerDead > -1 And StartingLevel = 0
 ; Then draw the player
 DisplayTransparentSprite(Player(PlayerFrame)\Image,DrawPlayerX
,DrawPlayerY)
 ; next we want to draw the player's healthbar
 If StartDrawing(ScreenOutput())
 ; draw an unfilled box first to hold the bar
 DrawingMode(4)
 Box(DrawPlayerX,DrawPlayerY-5,32,3,RGB(255,255,255))
 ; now we go back to filling the boxes we draw
 DrawingMode(0)
 ; fill it with gray
 Box(DrawPlayerX+1,DrawPlayerY-4,30,1,RGB(155,155,155))
 ; Now choose a color and distance to fill the box, based on the health of player
 If PlayerHealthBar > 15
 Box(DrawPlayerX+1,DrawPlayerY-4,PlayerHealthBar,1,RGB(0,255,0))
 EndIf
 If PlayerHealthBar > 9 And PlayerHealthBar <= 15
 Box(DrawPlayerX+1,DrawPlayerY-4,PlayerHealthBar,1,RGB(255,255,0))
 EndIf

281

 If PlayerHealthBar <= 9
 Box(DrawPlayerX+1,DrawPlayerY-4,PlayerHealthBar,1,RGB(255,0,0))
 EndIf
 Else
 MessageRequester("Error!", "Unable to Draw to ScreenOutput()", 
  #PB_MessageRequester_Ok)
 EndIf
 StopDrawing()
 EndIf

 ; if the player wants to see collision info, draw the bounding box here
 If ShowCollisionPoints = 1
 Map_ShowPlayerBoundingBoxes(DrawPlayerX,DrawPlayerY)
 EndIf

 ; Show our overlay image that wraps around the map viewport
 DisplayTransparentSprite(HUD_Image,0,0)

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ; Special messages
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 If StartDrawing(ScreenOutput())
 ; if the player has died
 If PlayerDead = -1
 ; show a little message and a countdown. Then restart the level.
 If Current_Time > Restart_Timer + 1000
 RestartTime = RestartTime - 1
 If RestartTime = 0
 StartLevel(Current_Level,#TileHeight,#TileWidth)
 StartingLevel = 0
 MyPlaySound(10)
 EndIf
 Restart_Timer = Current_Time
 Else
 DrawText(ScreenCenterX-150,ScreenCenterY,"Putting the jumper cables 
  on Migz and restarting level in " + Str(RestartTime))
 EndIf
 EndIf
 ; if the level is just starting fresh (not a restart), show new level information
 If StartingLevel = 1
 If Current_Time > Start_Timer + 1000
 StartingLevelTime = StartingLevelTime - 1
 If StartingLevelTime = 0
 StartingLevel = 0
 MyPlaySound(10)
 EndIf
 Start_Timer = Current_Time
 EndIf
 DrawText(ScreenCenterX-80,ScreenCenterY-40,"Level " + 
  Str(Current_Level) + "...starting in " + Str(StartingLevelTime))
 DrawText(ScreenCenterX-150,ScreenCenterY,"Robots take " + Str(RHits) + 

282

  " hits to destroy in this level.")
 DrawText(ScreenCenterX-65,ScreenCenterY+40,"Good luck, Migz!")
 EndIf
 Else
 MessageRequester("Error!", "Unable to Draw to
ScreenOutput()",#PB_MessageRequester_Ok)
 EndIf
 StopDrawing()

 ; nuke any sounds that have outlived their welcome
 MyRemoveSound()

 ; flip the screen so the user can see what happened
 FlipBuffers()

 ; if the player asked for a screenshot, handle that here
 If TakeScreenie = 1
 ; snag the full screen
 Screenie = GrabSprite(#PB_Any,0,0,800,600)
 ; update the filename so multiple screenies can be snagged per game
 Screenshot.s = "Migzscreenie" + Str(ScreenNum) + ".bmp"
 ; save out the screenshot
 SaveSprite(Screenie,Screenshot.s)
 ; reset the flag
 TakeScreenie = 0
 ; increase the image for next time
 ScreenNum = ScreenNum + 1
 ; wait a full second so we can show that something happened and so we can
 ; make sure we don't get like 20 F-10 presses!
 Delay(1000)
 EndIf
 ; handle the case where a player hits ALT-TAB and loses game focus
 ; if you don't do this, your game will crash on ALT-TAB
 If IsScreenActive() = 0
 Repeat
 FlipBuffers()
 Until IsScreenActive() = 1
 EndIf
Until KeyboardReleased(#PB_Key_Escape)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; END OF MAIN GAME LOOP
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

I know you must be thinking that is a lot of code, and it is. Could it be
made even smaller? Sure it could, but in the effort to make things as
clear as possible, I opted to go with a bit more verbose code to make it
more understandable.

If we took and added all those function calls in there, though, it’d be
enormous. So, all in all, that’s actually quite tidy!

283

Did you notice there were a number of places where I called RGB with
repeating values? What could you do to make that more efficient? Could
you maybe move them to the top of the file and assign them to
variables instead? Give it a shot and see if you can get it working
properly.

Making a level for Migz
There are a number of things that go into making a level for Migz. First
thing is to note the limitations of our game:

 This game, again in order to keep it simple enough to fit the
scope of this text, was built to allow only four types of
movement: left, right, climb ladder, descend ladder. There is no
jumping or falling or walking up into the page kind of things.

 The tiles are 32x32. Now the game engine can handle different
sizes than that, but the supplied K-2D MapMaker (in its current
form) cannot. So, in effect, we are limited to 32x32 unless a
different editor that supports a similar file format is created with
differing tile sizes.

 We have to place the robots by hand, and set the minimum and
maximum walk points.

 We have to place the healthpaks by hand.
 Migz has to be placed somewhere on the upper-left of the map

in order to start up the engine correctly. You can certainly go
into the Map code and remove this limitation, if you’d like.

As you build out a new level, pay special attention to making sure that
Migz will be able to walk only where you want him to, that there aren’t
too many robots, and that there are enough healthpaks to make the
level possible to complete. Also, make sure that all of the tiles line up
properly and nothing looks cut off. The time you spend building your
levels will reflect either greatly or poorly on your final product, so be
sure to take the time to do it right.

When you open the K-2D MapMaker you will first want to load in a tile
set to use for your maps. Open up “migztiles.png” from the graphics
directory of the game. Then open up the map “level1.dat.”

284

(Figure 23.1)

If you do a “Save as” and call your file “level4.dat” or something, you
can immediately make alterations and feel confident that you won’t
mess anything up.

 You can select the tile at the bottom of the screen to place in
the main map area. Do make sure to maximize this window to
get the most map area on the screen at once.

 You can control the spacer values between tiles in the event that
your tile set has spacers.

 You can adjust the width and the height of the map to make
small or very large worlds.

 You can put the grid on (in whatever color you want) in order to
see exact placement of tiles before you click.

 …and you can of course scroll all around your map and all that
fine stuff.

Play with the width and height settings in the K-2D MapMaker as well.
Build a huge map, if you want to. It’s tougher, but it’s doable!

Placing robots and healthpaks
To place items on the map, you should flip the grid on. This will help
make sure that you’re putting items in the proper spots.

Let’s take an example of adding a robot to the above map and setting
the robot’s minimum and maximum allowable travel points.

285

(Figure 23.2)

The green circle above we’ll use for two things. First, we’ll say that this
is where we want the robot to start, and second we’ll say that this is the
farthest position to the right that the robot is allowed to walk. The
yellow circle represents the farthest point to the left the robot may walk.

If you place your mouse inside of the grid-square in the green circle,
you’ll see the following information near the top of the screen:

(Figure 23.3)

That tells you right away what the map array location will be for this
robot’s starting point. Also, the “14” tells you how far on the X the
robot will be allowed to travel. If you decide to improve the robots’
abilities by allowing them to move up and down ladders and such too,
then you would also want to start using that Y value. But, keeping to
our example game, we’ll just stick with X.

Now place your mouse in the yellow circle and you’ll get:

(Figure 23.4)

286

This is obviously the minimum X that the robot will be allowed to travel
to.

Now that we have that information, we just call on the AddRobot
procedure and we’re done:

AddRobot(14,6,1,14,TileWidth,TileHeight)

Here we’re just telling the AddRobot procedure to create a robot at
position 14,6 in our map array, and then tell it to allow the robot to walk
anywhere between position 1 and position 14. And we put in the tile size
information too, in case someone creates a game with different tile
sizes.

The only difference in adding healthpaks is that there is no minimum X
or maximum X as healthpaks can’t move on their own. So if we were to
place a healthpak at the same position as the robot, we’d just do this:

AddHealthPak(14,6,TileWidth,TileHeight)

Easy stuff, no?

Code for starting a level
All this is well and good, but you’ll need to have some code to start up
the levels. You want to make sure that you’re loading in the proper tiles,
the proper level data, setting up your robots as they should be setup,
adding in healthpaks, and placing your character on the appropriate
spot as well.

Here is the code used to set up level one in the demo game, broken
down. If you want to see the full code, it’s on your disk in the
migzdemo.pb file:

Step 1: Load in our tiles

; Load the tiles for the Map
Map_LoadTiles("graphics\migztiles.png",TileWidth , TileHeight ,0)

Step 2: Reset the map to make sure all arrays (map, collision, etc.) are
all wiped out!

; Reset the map
Map_ResetMap(0,0)

Step 3: Load in the actual map data and fill up the map array
information

287

; Load the actual map
Map_LoadBinaryMap("migzlevel1.dat")

Step 4: Set all the wall collision points in the map. If you neglect this,
Migz will be able to walk through walls!

; Setup the wall objects so we know where we can expect to collide
SetupCollisionPoints(TileWidth ,TileHeight)

Step 5: Setup the spots on the player that will be checked for collisions.
You can adjust these as you see fit based upon your level requirements.

; Initialize the Player's bounding boxes
Map_SetupPlayerBoundingBoxes(7,0,24,1, 7,30,24,31, 7,0,8,31, 23,0,24,31)

Step 6: Make certain that we have the appropriate widths and heights,
as most maps are differently sized.

; reset the pixel width's and height's accordingly
Map_Pixel_Width= Map_Width * TileWidth
Map_Pixel_Height = Map_Height * TileHeight

Step 7: Get rid of all the previous robots. We don’t want robots showing
up in the middle of walls and stuff because the last map they were on
was laid out differently.

; nuke all previous robots
DeleteRobots()

Step 8: Make sure there are no lingering lasers either.

; nuke all previous lasers
DeleteLasers();

Step 9: Wouldn’t it be frustrating to be within a fraction of your life and
see a healthpak hiding in the center of a wall and you can’t get to it?
Make sure to delete legacy paks!

; nuke all previous healthpaks
DeleteHealthPaks()

Step 10: Put the player in the appropriate spot on the new level.

; reset the player information
PlayerWorldX = 2 * TileWidth ; start point X
PlayerWorldY = 6 * TileHeight ; start point Y

Step 11: Set the exit point on the map, so the player can get on to the
next level. What you choose as your exit point is entirely up to you. In

288

the Migz demo, I opted to use the blue door tile, but you may do
whatever you wish.

PlayerExitX = 37 * TileWidth ; exit point X
PlayerExitY = 3 * TileHeight ; exit point Y

Step 12: Reset all the basic information on the player. This stuff should
just be cut-n-paste.

DrawPlayerX = ScreenCenterX
DrawPlayerY = ScreenCenterY
PlayerFrame = 0
PlayerDead = 0
PlayerHit = 0
PlayerHitAnimation = 0
PlayerFacing = 4
PlayerArmor = 100
PlayerHealthBar = 30
Fidget_Level = 0
Fidget_Timer = Current_Time
PlayerFidgeting = 0
Fidget_Interval = 5000
Fidget_Speed = 250
PlayerSleeping = 0
PlayerFiring = 0
LaserSpeed = 8
RobotArmorHit = 7
PlayerArmorHit = 10
AllowableDistance = 30
RHits = 3

Step 13: You’ve picked various spots for your robots to hang out, and
have selected their minimum/maximum X travel points, so add them
here.

AddRobot(15,6,1,26,TileWidth,TileHeight)
AddRobot(26,6,1,26,TileWidth,TileHeight)
AddRobot(33,6,28,34,TileWidth,TileHeight)
AddRobot(6,13,1,15,TileWidth,TileHeight)
AddRobot(2,17,1,30,TileWidth,TileHeight)
AddRobot(22,17,1,30,TileWidth,TileHeight)
AddRobot(35,17,32,38,TileWidth,TileHeight)
AddRobot(28,15,25,30,TileWidth,TileHeight)
AddRobot(30,12,25,31,TileWidth,TileHeight)

AddRobot(25,9,25,34,TileWidth,TileHeight)

Step 14: You’ve picked various spots for your healthpaks to be, so add
them here.

AddHealthPak(4,1,TileWidth,TileHeight)

289

AddHealthPak(26,6,TileWidth,TileHeight)
AddHealthPak(3,9,TileWidth,TileHeight)
AddHealthPak(25,9,TileWidth,TileHeight)
AddHealthPak(31,12,TileWidth,TileHeight)
AddHealthPak(15,13,TileWidth,TileHeight)
AddHealthPak(2,17,TileWidth,TileHeight)
AddHealthPak(29,17,TileWidth,TileHeight)
AddHealthPak(34,6,TileWidth,TileHeight)
AddHealthPak(33,12,TileWidth,TileHeight)

And that is how you use the code to make a level!

The Libraries
In the original version of this book, I had placed most everything the in
the migzdemo.pb file, and it was a right mess. In this version of the
book I have split out a number of things to make the code more
maintainable. If you check out the "libs" directory, you will see a bunch
of .pb files in there that make up the brunt of this game. Feel free to
alter the code in these files as you see fit.

Conclusion
It’s been a long journey to get to this point, and there has been a ton of
stuff to learn. The more interesting news is that you’re just getting
started. There is so much more to learn and grow in that you’ll soon find
this text as pedantic as 3rd grade math. But that’s okay. We all have to
start somewhere, right?

But now what do you do?

Well, now you take the fundamentals from this game and expand upon
them. Find other ways to accomplish similar tasks. Add more detailed AI
to the game. Study up on game physics and add in jumping and falling.
The only limit to what you can do in the world of 2D games here is your
imagination and your ability to figure out the puzzles that come along
with each challenge.

Often times you’ll be able to find someone that has faced a similar
problem to something you face now, and you may get an answer right
away to your problem. But I caution you to first try to figure it out on
your own. This is the best way to grow in this field, and for all you know
your solution may be better than the one you got from another person!

It’s been a fun journey. I want to thank you for reading this book and I
wish you the very best with your game development!

290

291

Appendix
16-Bit Color..18
24-Bit Color..19
32-Bit Color..19
8-Bit Color..18
ActionTimer...269
AddElement..81, 89, 198
AllocateMemory...94, 97
And...47
Animation Timing..160
Argument..33
Arrays...59
Arrays of Structures..74
Arrays within Structures...78
Art Asset List..219
Artificial Intelligence..269
Bit-Depth..18
Bits...17
Blue()..133
Bounding Box Collisions..164
Box...138
Brensenham..136
Byte..30, 62
Bytes...17
Cartesian Coordinates...39
CatchSound...192, 195
Circle..140
ClearList...92
ClearScreen...29, 133
CloseFile...120
Commenting...22, 36
CompareMemory..101, 102
CompareMemoryString..102
CopyMemory..99, 101, 102
CopyMemoryString..102
CountList..81
CreateFile..118, 123
CreateSprite3D...148
Custom Mouse Cursor..179
Data..66
Declare...107
Delay..29, 159
DeleteElement..82
DIM..60
DirectX...20
DisplaySprite..142
DisplaySprite3D...144
DisplayTransparentSprite..144, 164, 173, 244
DrawingMode...139
DrawText..26, 120
Edge-Independent Scrolling..259
ElapsedMilliseconds...160, 198
Ellipse...140
ElseIf..46
End...27, 29

EndDataSection..67
Eof..124
ExamineJoystick...182
ExamineMouse...178
Extending Structures...84
Extends...84
Files..118
FileSeek..123
FirstElement...92
FlipBuffers..29, 159
Float..62
Floats..32
For…Next Loops..50
ForEach..81
FPS...20, 203
FreeMemory...95
Game Design..218
Global...33
GrabSprite...144, 233
Green()...133
Handle..30
Handles...33
If…Else…EndIf..42
IncludeFile..114
IncludePath...117
InitJoystick...180
InitMouse..177
InitSound..184
InitSprite...27
InitSprite3D..146
InsertElement..92
IsFile...128
JoystickAxisX...182
JoystickAxisY...182
JoystickButton..183
K-2D MapMaker...242, 282
KeyboardInkey...174
KeyboardPushed...174
KeyboardReleased..174
LastElement..92
Libraries..107, 115
Line..135
LineXY...135
ListIndex...92
Loading Tiles..232
LoadSprite..141, 142
Loc..123
Local...33
Lof..128
Long..30, 32, 62
Making a level for Migz...282
MapData...238
maplib.pb..233
Memory..94
MessageRequester..81

Migz Falls Asleep...275
Migz Gets Bored...272
mods...201
MouseButton..179
MouseDeltaX..178
MouseDeltaY..178, 179
MouseWheel...179
MouseX..178
MouseY..178
Multidimensional Arrays..62
Multiple Sounds..190
Music Asset List...227
Music Modules...201
Nested IF Statements..45
NewList..80
NextElement...93
NPC..21
Object Code..16
OpenConsole..24
OpenFile...123
OpenScreen..27
OpenWindow..25, 28
Or...47
Overlaying Multiple Sounds...195
Page Flip Animation...152
Passing Arguments...110
PeekB...95
PeekF..95
PeekL..95
PeekS..95
PeekW..95
Pixel-Perfect Collision Detection..169
Playing Music...199
PlaySound...185
Plot...134
Point...133
Pointer..30
Pointers...33, 88
Poke and Peek...95
PokeB...95
PokeF..95
PokeL...95
PokeS..95
PokeW..95
Print..24, 26
Procedures..107
Program..16
Protected...33
Random..80
Re-dimensioning Arrays...65
Read..66
ReadFile..121, 123
Real Time...208
ReAllocateMemory...97
Red()...133

Repeat…Until/Forever..56
ResetList...93
Restore..66
Returning Results...110
RotateSprite3D...144
ScreenOutput..29
Scrolling Code..260
SELECT...48
SelectElement...92
Simple Arithmetic...38
Sound Asset List...226
SoundFrequency...187
SoundPan..186
SoundVolume...186
SpriteCollision..165, 169
SpriteHeight..144
SpritePixelCollision..169, 173, 250
Sprites...141
SpriteWidth...144
Start3D...149
StartDrawing...26, 29, 139
Stop3D..149
StopDrawing...26
String..30
structure..62
Structure..80, 82, 84, 88
Structure Lists...79
Structures..74
Style..22
Technical List...227
Text-Based Map File Format..237
The main loop...277
The Rolling Timer..205
TransparentSpriteColor...143
UseFile...128
UseJPEGImageDecoder..142
UsePNGImageDecoder...142
UseTGAImageDecoder..142
UseTIFFImageDecoder..142
Variable Length Data..71
Variables...30
While…Wend Loops..53
Word...30, 32, 62
WriteByte..119, 121
WriteFloat...119, 121
WriteLong...119, 121, 122
WriteString...119, 122
WriteStringN..119
WriteWord..120, 122
XIncludeFile...114
Z-Ordering..228
#PB_ANY..141

License
I hope you enjoyed this book and I hope that it's helped you out in
some way. Please note that I will no longer be supporting this book, but
you may feel free to update it as you see fit, as long as you stick with
the rules of the Creative Commons License.

Programming 2D Scrolling Games by John P. Logsdon & Derlidio
Siqueira is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

You may copy, update, distribute, and transmit this work for non-
commercial purposes as long as you give attribution to the original
authors, provide a link to my website at www.johnplogsdon.com, and
distribute the resulting work under the same license as this one.

http://www.johnplogsdon.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://www.johnplogsdon.com/
http://www.johnplogsdon.com/

My Other Work
If you found this book helpful, please consider checking out my other
projects. Word of mouth and reviews are the most helpful thing to any
author, so I would greatly appreciate your support.

My lighthearted fantasy novels (Rated: PG-13)

A Quest of Undoing
ISBN-13: 978-1482625295

Amazon: http://www.amazon.com/Quest-
Undoing-John-Logsdon-ebook/dp/B00F1EREBS

Whizzfiddle the wizard has to finish this quest in 30 days
or he'll lose his guild membership status, meaning he'll
have to actually work for a living. At the perpetual age of
650, this is really no longer an option.

He has to find a quest, get it contracted, and finish it to
the letter. Since he's already done nearly everything there
is as far as questing goes--it has to be interesting.

The last questing party to come in to Gilly's were the
oddest bunch he'd seen in a long time, and being a wizard in the land of Ononokin,
that is saying something. Seeing that it was a quest of undoing, Whizzfiddle signed
on straight away.

Now he must constantly struggle to keep the troop on-track while simultaneously
fighting to ward off his former apprentice's attempts to foil the mission...and he
can’t help wondering if it’s even worth the effort.

The Journey Home
ISBN-13: 978-1494204013

Amazon: http://www.amazon.com/Journey-
Home-John-Logsdon-ebook/dp/B00H8TBMR6

Paulie Vergen is your average, every day vampire. He's
short, overweight, and balding, and he's a bit lacking in
the realm of self-confidence.

Life was what it was for Paulie until the day that a newly
infected werewolf landed on his doorstep. That day
launched the one (and only, to this point) adventure that
Paulie had ever had...and it was a doozy. Since new
werewolves suffer amnesia, Paulie dubs the werewolf
'Mr. Biscuits' by night and 'Burt Biscuits' by day (you

know, because werewolves are only werewolves at night and all).

Paulie has to help Burt get to Yezan, the land of the werewolves, in order to find
help in getting Burt's memories back.

http://www.amazon.com/Journey-Home-John-Logsdon-ebook/dp/B00H8TBMR6
http://www.amazon.com/Journey-Home-John-Logsdon-ebook/dp/B00H8TBMR6
http://www.amazon.com/Journey-Home-John-Logsdon-ebook/dp/B00H8TBMR6
http://www.amazon.com/Quest-Undoing-John-Logsdon-ebook/dp/B00F1EREBS
http://www.amazon.com/Quest-Undoing-John-Logsdon-ebook/dp/B00F1EREBS
http://www.amazon.com/Quest-Undoing-John-Logsdon-ebook/dp/B00F1EREBS
file:///E:/Writing/Programming/PBBook/
file:///E:/Writing/Programming/PBBook/

But there's a problem (well, multiple ones really). Stelan Bumache, the notable
assassin who works for King Larkin in Yezan, has been hired to kill the newly
infected Burt Biscuits.

Can Paulie and Burt successfully navigate the treacherous path from Viq to Yezan
while avoiding the attempts of Stelan Bumache to destroy them both?

My kids science fiction series

Nanoagents: Induction
ISBN-13: 978-1492386957

Amazon: http://www.amazon.com/Nanoagents-
Induction-John-Logsdon-ebook/dp/B00FEN5W9M

Seth Brennan is a typical, run-of-the-mill kid genius who
is leading the school’s computer club into the upcoming
science fair.

Seth gets an email from Xabigan Industries while
working on ideas for a project. The email promises a new
piece of technology that will revolutionize the way people
use the Internet. And it includes free shipping!

The problem is that a lot of computer-savvy kids have
gone missing over the last few months, so Seth wants to be careful with this new
piece of tech. Unfortunately, his friend and next-door neighbor, Chen, also got the
email from Xabigan Industries and he’s never careful with anything.

When Seth gets home from school that night he learns that Chen has disappeared!

Could Xabigan Industries be behind these disappearances? Could this new
technology have some sinister application that nobody knows about? Seth has to
connect the tech, outwit a couple of robots, foil the plans of a malevolent alien, and
try to save Chen before it's too late!

Nanoagents: Lightcycle
ISBN-13: 978-1492878759

Amazon: http://www.amazon.com/Nanoagents-
Lightcycle-John-Logsdon-ebook/dp/B00FNX7TVW

A suspected terrorist, Fedir Goraya, has built a
motorcycle that is capable of housing a nuclear bomb,
and it can be driven by remote control. It’s called the
Lightcycle.

The Nanoagents team is called in to track information on
the suspect, which is not easy because his access point
inside the Internet is on another grid and he’s encrypted
his data stream. Plus, the agents are just getting used to
working inside the 'net.

http://www.amazon.com/Nanoagents-Lightcycle-John-Logsdon-ebook/dp/B00FNX7TVW
http://www.amazon.com/Nanoagents-Lightcycle-John-Logsdon-ebook/dp/B00FNX7TVW
http://www.amazon.com/Nanoagents-Lightcycle-John-Logsdon-ebook/dp/B00FNX7TVW
http://www.amazon.com/Nanoagents-Induction-John-Logsdon-ebook/dp/B00FEN5W9M
http://www.amazon.com/Nanoagents-Induction-John-Logsdon-ebook/dp/B00FEN5W9M
http://www.amazon.com/Nanoagents-Induction-John-Logsdon-ebook/dp/B00FEN5W9M
file:///E:/Writing/Programming/PBBook/
file:///E:/Writing/Programming/PBBook/

Ajita has to spoof Goraya’s access page, Cheryl and Bits need that intel to hack the
rest of the way so they can snag the schematics on the bike and to setup a block
against the detonation codes for the bomb, and Jaden and Rez need the bike’s
layout so they can build a piece of tech that Seth and Chen can use to get inside the
Lightcycle.

And this has to all be done without Goraya suspecting a thing!

Can the agents get control of the Lightcycle before Goraya sets it in motion?

The Nanoagents have to pull together, work as a team, and leverage each other’s
strengths in order to save a small city in the Ukraine from certain destruction!

Nanoagents: Moon Base
ISBN-13: 978-1492978930

Amazon: http://www.amazon.com/Nanoagents-
Moon-Base-John-Logsdon-ebook/dp/B00H8R8YFQ

A secret research facility has gone dark and the
Nanoagents are sent to find out what happened. The
problem is that the facility is on the moon!

The team works with NASA to determine a way to get to
the moon. Once there they learn that a group of aliens
has taken the Moon Base crew hostage. Seth, Ajita,
Jaden, Cheryl, and Chen have to figure out how to free
the hostages and take back Moon Base.

That's all good and well, except...

The aliens (known as Klakzaskians) that have taken over the base are not the ones
running the show, they’re just following orders. The alien in-charge is a Zbrakni,
just like the alien named “Xabigan” that Seth had run into a few months earlier.
His name is “Civugan” and he has learned a way to make the Klakzaskians do
whatever he wants, and one of the things he wants to do is conquer Earth!

Can the Nanoagents get the Klakzaskians on their side? Will they be able to work
with these new aliens to take Civugan down and get back control of Moon Base?

The Nanoagents will have to rely on each other if they’re going to free the hostages
and save the Earth from certain doom.

Visit John on the web

www.JohnPLogsdon.com

http://www.JohnPLogsdon.com/
http://www.amazon.com/Nanoagents-Moon-Base-John-Logsdon-ebook/dp/B00H8R8YFQ
http://www.amazon.com/Nanoagents-Moon-Base-John-Logsdon-ebook/dp/B00H8R8YFQ
http://www.amazon.com/Nanoagents-Moon-Base-John-Logsdon-ebook/dp/B00H8R8YFQ
file:///E:/Writing/Programming/PBBook/

	Programming 2D Scrolling Games
	PART 1: PUREBASIC BASICS
	Chapter 1: Welcome to PureBasic
	What is PureBasic and who is this Book for?
	Why Learn PureBasic?
	What Will I Need to Run PureBasic?
	The Major Sections of this Book
	Conventions Used in this Book
	Where can I get the source?
	What if there are errors in the book or code?

	Chapter 2: Fundamentals of Programming
	What is a Program?
	Object Code
	Bits and Bytes
	Screen Resolutions and Bit-Depth
	Speed Impact of Higher Resolutions and Bit-Depths
	DirectX, Peripheral Cards and Drivers
	Creative and Technical Design Documents
	Good Coding Style and Commenting
	A Place to Work

	Chapter 3: Getting Started with PureBasic
	The Good Old “Hello, World!” Program
	OpenConsole
	OpenWindow
	OpenScreen

	Chapter 4: The Basics of PureBasic
	Variables, What are they?
	Defining Variables
	Commenting Your Code
	Simple Arithmetic
	Cartesian Coordinates

	Chapter 5: Program Control Statements
	If…Else…EndIf
	Nested IF Statements
	ElseIf Statement
	And and Or Statements
	The SELECT Statement
	Loop Basics
	For…Next Loops
	While…Wend Loops
	Repeat…Until/Forever

	Chapter 6: Understanding/Using Arrays
	What Arrays Look Like
	Initializing an Array (the DIM command)
	Multidimensional Arrays
	Re-dimensioning Arrays
	Loading Data Values into an Array
	Variable Length Data Statements

	Chapter 7: Understanding/Using Structures
	Arrays of Structures
	Arrays within Structures
	Basic Structure Lists
	Advanced Operations – Extending Structures
	Advanced Structure Operations – Pointers
	Other List Commands

	Chapter 8: Working with Memory
	Creating and Freeing Memory Buffers
	*MemoryBuffer = AllocateMemory(NumberOfBytes)
	FreeMemory(*MemoryBuffer)

	Poke and Peek
	PokeB / PeekB
	PokeB(*MemoryID,115)
	Value = PeekB(*MemoryID)

	Resizing Allocated Memory
	ReAllocateMemory(*MemoryID,10)

	Copying Memory Buffers
	CopyMemory(*SourceMemoryID,*DestinationMemoryID,Length)

	Comparing Memory
	String-Specific Commands

	Chapter 9: Procedures and Libraries
	Declaring a Procedure
	Declare.<ReturnType> ProcedureName (Arguments)

	Passing Arguments and Returning Results
	Including Files
	Libraries

	Chapter 10: Working with Files
	Creating a File
	FilePtr = CreateFile (#File,FileName.s)

	Writing to a File
	WriteByte(FilePtr, Value.b)
	WriteWord(FilePtr, Value.w)
	WriteStringN(FilePtr, Value.s)
	WriteData(FilePtr, *MemoryBufferID, LengthToWrite)

	Reading From a File
	FilePtr = ReadFile(#File,FileName.s)
	Value.b = ReadByte(FilePtr)
	Value.w = ReadWord(FilePtr)
	Value.l = ReadLong(FilePtr)
	Length = ReadData(FilePtr ,*MemoryBufferID,LengthToRead)

	Moving Around Inside of Files
	FilePosition = Loc()
	FileSeek(FilePosition)
	Result = Eof(#File)

	A Quick Binary Example
	Miscellaneous File Commands

	PART 2: PB GAME TOOLS
	Chapter 11: Colors and Drawing Primitives
	Getting and Setting Colors
	FrontColor(Red,Green,Blue)
	MixedValue = RGB(Red,Green,Blue)
	ColorValue = Point(X, Y)
	ColorValue = Point(X, Y)
	RedAmount = Red(ColorValue)
	ColorValue = Point(X, Y)
	RedAmount = Red(ColorValue)
	GreenAmount = Green(ColorValue)
	BlueAmount = Blue(ColorValue)
	ClearScreen(RGB(Red,Green,Blue))

	Dealing with Pixels
	Drawing Lines
	Line(StartX, StartY, Width, Height, [optional color])

	Rectangles
	Box(StartX, StartY, Width, Height, [Optional Color])

	Circles and Ellipses
	Circle(X, Y, Radius, [Optional Color])
	Ellipse(X, Y, RadiusX, RadiusY, [Optional Color])

	Chapter 12: Working with Sprites
	Basic Loading and Displaying of Sprites
	Result = LoadSprite(SpriteNumber, FileName [,Optional Mode])
	DisplaySprite(SpriteNumber, X, Y)
	TransparentSpriteColor(SpriteNumber, RGB(RedColor, GreenColor, BlueColor))

	Rotating an Image to Make Multiple Frames
	Writing directly to a sprite

	Chapter 13: Handling Animation
	Page Flip Animation
	Animating Images
	Animation Timing

	Chapter 14: Collision Detection
	Bounding Box Collisions
	SpriteCollision (Sprite1,X,Y,Sprite2,X,Y)

	Pixel-Perfect Collision Detection

	Chapter 15: Handling Input
	Using the Keyboard
	Using the Mouse
	Displaying a Custom Mouse Cursor
	Using the Joystick

	Chapter 16: Sounds and Music
	Loading Sounds
	Manipulating Sounds
	Multiple Sounds Playing Simultaneously
	Loading Sounds into Memory
	Overlaying Multiple Sounds
	Playing Music
	Music Modules

	Chapter 17: Timers
	Frames per Second (FPS) Tracking
	The Rolling Timer
	Locking in at Real Time

	PART 3:
	Migz Callo: Laser Blazer
	Chapter 18: Game Design
	Background Story
	Game Features
	Art Asset List
	Sound Asset List
	Music Asset List
	Map Asset List
	Technical List

	Chapter 19: Z-Ordering
	What is Z-Ordering?
	Why Use Z-Ordering?
	How to Implement Z-Ordering

	Chapter 20: Loading Map Files
	Loading Tiles
	Text-Based Map File Format
	Loading Map Dimensions
	Loading the Map Data
	Binary-Based Map Files
	Loading Binary Maps
	Saving Binary Maps
	Showing a Loaded Map

	Chapter 21: Moving Sprites on Scrolling Maps
	Player hits a wall
	Screen and World Coordinates
	Scrolling a Map (Theory)
	Edge-Independent Scrolling
	Scrolling Code
	More on Coordinate Systems
	Screen Vs. World
	Robots, HealthPaks, and Lasers…oh my!

	Chapter 22: Simple AI
	Robots Doing Stuff
	Robots Firing
	Migz Gets Bored
	Migz Falls Asleep

	Chapter 23: Putting It All Together
	The main loop
	Making a level for Migz
	Placing robots and healthpaks
	Code for starting a level
	The Libraries
	Conclusion

	Appendix
	License
	My Other Work

