
Page 1 

 
 

Splitter control 

 
by Stephen Rodriguez   

 
 

 

 



Page 2 

General. 

The Nexus II splitter control is a more powerful and flexible version of the familiar 

PureBasic splitter gadget with two important differences : 

  

1. The two 'split' gadgets are not resized dynamically as the user moves the 'slider'. 

This generally makes for a much smoother operation. 

2. There is the option of adding a 'gripper' to the slider which allows the user to 

'anchor' one of the two 'split' gadgets. Indeed, you can even prevent the slider 

from being dragged whilst one of the gadgets is anchored etc. (See the second of 
the two splitter demo programs.) 

 

On top of this, and on top of being able to customise the splitter in various ways, it 

functions in a very similar fashion to the PureBasic splitter in that it allows you to specify 

minimum sizes for the 'split' gadgets and indeed keep one gadget fixed whilst the entire 

control is being resized etc.  

 

 

 

Using the Nexus II splitter control within your own programs. 
First ensure that you have correctly installed the Nexus II source files. See the Nexus II 

.chm user guide for more details of this. 

 

Any program requiring the services of the Nexus II splitter control needs to declare the 

constant : 

 

#INCLUDE_NEXUSII_SPLITTER = 1 

 

at the top of the source, before adding the main Nexus II source file into the mix. 

 

At this point, when you compile your program, the Nexus II splitter control will be included 

within the compilation. 

 

 

 

Creating an instance of the Nexus II splitter control. 
To create a new instance of a Nexus II splitter control, we use the 

NexusII_CreateSplitter() function. 

 

This function has the following Purebasic prototype : 

 

Procedure.i NexusII_CreateSplitter(x, y, width, height, gadget1, gadget2, 

sliderWidth, styles=0, callback=0) 

 

with the following parameters : 

 

 x, y, width, height 
 

  location and dimensions of the control. 

 

 gadget1, gadget2 

 

the Purebasic gadget# of the two child gadgets which will be automatically 

resized by the splitter. These gadgets will be embedded within the splitter 

(as child controls). 



Page 3 

Note that the splitter will still function if one (or both) of the specified 

gadget# do not actually identify a gadget! This can be useful for those 

wishing to employ some custom painting directly within the splitter control. 

 

 sliderWidth 

  

Pixels.  Defaults to 3 pixels if an invalid value is given. Equates to a slider 

height in the case of a horizontal splitter. 

 

 styles 

 

  A combination of the following values : 

 

• #NEXUSIISPLITTER_VERTICAL 

 

The default is a horizontal splitter. 

 

• #NEXUSIISPLITTER_GRIPPERWITHDRAG 

 

Adds a gripper to the slider, one which can be dragged along with the 

slider itself. When the user clicks a gripper, one or the other of the 

two child gadgets is collapsed down to it’s specified minimum size. 

 

• #NEXUSIISPLITTER_GRIPPERWITHNODRAG 

 

As above, but with this style, the gripper cannot be dragged. Only 

that part of the slider other than the gripper can be dragged to resize 

the child controls. 

 

• #NEXUSIISPLITTER_FIRSTFIXED 

 

When the entire splitter control is resized, then this style bit ensures 

that the first child control remains fixed in size whilst the second 

child control will be resized (and the slider repositioned accordingly). 

 

• #NEXUSIISPLITTER_SECONDFIXED 

 

As above, but this time the second child control remains fixed in size 

etc. 

 

• #NEXUSIISPLITTER_DONOTERASECHILDRECTS 

 

To reduce flicker when employing dynamic resizing of controls (e.g. 

resizing a Nexus II splitter when it’s parent window is resized by the 

user) then you can consider using this style bit. 

 

This style will remove all erasing from those parts of the splitter 

control in which the two child controls reside (or would reside in the 

case that you opt not to add any child controls).  

 

For example, if you use a Nexus II splitter with two button gadgets 

(as at least one of our demo programs does) then you would be 

advised to use this style bit simply because there is no point adding 

an additional layer of erasing to the part of the splitter occupied by 

the button gadgets! On the other hand, you would be advised not to 

use this style if using a splitter directly on a ComboBox gadget as 

these gadgets will typically not expand to fill the entire space allotted 



Page 4 

to it by the splitter and thus removing erasing will lead to all kinds of 

redrawing issues! 

 

This style bit can also be useful for advanced users who employ one 

of our splitters without any child controls and instead utilise custom 

painting techniques. 

 

callback 

 

 

Optional. 

 

The address of a Nexus II call-back function residing within your own 

program. This function will receive notifications and messages as described 

in the ‘Event call-back’ section below. 

 

 

The function, if successful, will return a fully instantiated NexusIIControl object as 

described in the Nexus II .chm user guide.  Use the appropriate methods of this object to 

administer the control as appropriate, -and as described in the next section. 

 

 

 

NexusIIControl methods for use with a splitter control object. 
After a successful invocation of the above function, you will be left with a fully instantiated  

NexusIIControl object pointer.  

 

Now, not all of the NexusIIControl class methods are appropriate for use with a splitter 

control object and so you must refrain from attempting to use any NexusIIControl method 

which is not specifically listed here as being appropriate for such a control object. Any 

attempt to do so will be met with a very unseemly crash! 

 

 

List of NexusIIControl class methods for use with a splitter control object. 

We offer up detailed explanations for a method’s use only where warranted as many of the 

following methods are entirely self explanatory. 

 

 

\Destroy() 

Use only if destroying a splitter object before freeing it’s parent control/window as 

otherwise this method will be called automatically. 

 

This method will obviously also free any child controls. 

 

\GetControlType() 

Returns #NEXUSII_SPLITTER. 

 

\Disable(state) 

 

\GetAttribute(attribute) 

Retrieves the appropriate attribute for the splitter control. 

 

See the \SetAttribute() method below for a list of appropriate values for the attribute 

parameter. 

 

\GetColor(colorType) 

Retrieves the specified colour for the underlying control. 



Page 5 

See the \SetColor() method below for a list of appropriate colour types. 

 

\GetData() 

 

\GetHeight() 

 

\GethWnd() 

 

\GetID() 

Returns the Purebasic gadget# of the container gadget used as the basis for the Nexus II 

splitter. 

 

\GetState() 

Returns one of the following : 

 

• #NEXUSIISPLITTER_ANCHORFIRSTGADGET 

Indicates that the first gadget has been anchored (due either to the user clicking 

the gripper or through the \SetState() method). 

 

• #NEXUSIISPLITTER_ANCHORSECONDGADGET 

Indicates that the second gadget has been anchored (due either to the user clicking 

the gripper or through the \SetState() method). 

 

• A positive value to indicate the position of the slider. This position equates to the 

width of the first child gadget + the size of the internal margin (which can be 

retrieved with the \GetAttribute() method). 

 

\GetWidth() 

 

\GetX() 

 

\GetY() 

 

\Hide(state) 

 

\Resize(x, y, width, height) 

 

\SetAttribute(attribute, value) 

Sets the appropriate attribute for the splitter control. 

 

Possible attributes are : 

 

• #NEXUSIISPLITTER_FIRSTMINIMUMSIZE 

(Get and Set.) 

 

• #NEXUSIISPLITTER_SECONDMINIMUMSIZE 

(Get and Set.) 

 

• #NEXUSIISPLITTER_FIRSTGADGET 

(Get and Set.) 

Use this attribute to change the first child control which is subject to the splitter’s 

auto-sizing etc. Any existing child gadget will be returned to the splitter’s parent. 

 

When retrieving, a value of -1 is returned if there is no first child control. 

 

• #NEXUSIISPLITTER_SECONDGADGET 

(Get and Set.) 



Page 6 

Use this attribute to change the second child control which is subject to the 

splitter’s auto-sizing etc. Any existing child gadget will be returned to the splitter’s 

parent. 

 

When retrieving, a value of -1 is returned if there is no second child control. 

 

• #NEXUSIISPLITTER_GRIPPERLENGTH 

(Get and Set.) 

Pixels. 

 

• #NEXUSIISPLITTER_SLIDERTYPE 

(Get and Set.) 

Value = #NEXUSIISPLITTER_GRIPPERWITHDRAG or 

#NEXUSIISPLITTER_GRIPPERWITHNODRAG or zero to indicate that there is just a 

basic slider with no gripper. 

 

• #NEXUSIISPLITTER_SLIDERWIDTH 

(Get only.) 

Pixels. This really equates to a slider height in the case of a horizontal slider. 

 

• #NEXUSIISPLITTER_SIZEOFSLIDERMARGIN 

(Get only.) 

The number of pixels between a child control and the actual slider. Useful for 

advanced users employing some kind of custom painting within the splitter control. 

 

\SetColor(colorType, color) 

Sets the specified colour for the underlying splitter control. 

 

Possible values for the colorType parameter are : 

 

• #NEXUSIISPLITTER_BACKCOLOR 

This colour is used when erasing parts of the splitter control and also to fill any 

margins between the slider and the child controls. 

 

• #NEXUSIISPLITTER_SLIDERCOLOR 

• #NEXUSIISPLITTER_ANCHOREDSLIDERCOLOR 

 

\SetData(value) 

 

\SetState(state) 

Use this method to set the slider position via the state parameter as follows : 

 

• #NEXUSIISPLITTER_ANCHORFIRSTGADGET 

Anchor the first gadget (collapses the first gadget to its’ minimum size). 

 

• #NEXUSIISPLITTER_ANCHORSECONDGADGET 

Anchor the second gadget (collapses the second gadget to its’ minimum size). 

 

• #NEXUSIISPLITTER_RESTORESLIDER 

Restores the slider from a position of being anchored (if indeed the slider was 

anchored). 

 

• A positive value giving the absolute position of the slider. This position equates to 

the width of the first child gadget + the size of the internal margin (which can be 

retrieved with the \GetAttribute() method). 

 

 



Page 7 

Event call-back function. 
Specifying a call-back function when creating an instance of a splitter object allows your 

application(s) to receive notifications and other messages from the control itself. 

 

Your call-back must take the form of all Nexus II call-back functions : 

 

Procedure.i SplitterCallback(splitter.NexusIIControl, uMsg, wParam, lParam, xParam) 

 

 

as described in the Nexus II .chm user guide. 

 

 

The messages pertinent to a splitter control object are detailed below. 

 

 

#NEXUSIISPLITTER_SLIDERANCHORED 

 

Notification that the slider has been anchored (either through the user clicking the 

gripper or through the \SetState() method) and one of the two child gadgets has 

been collapsed to its’ minimum specified size. 

 

wParam = 1 or 2 to indicate which child gadget has been collapsed. 

 

The return value is ignored. 

 

#NEXUSIISPLITTER_ANCHORRELEASED 

 

Notification that a previously anchored slider has been released (either through the 

user clicking the gripper or through the \SetState() method) and returned to it’s 

pre-anchor position. 

 

wParam = 1 or 2 to indicate which child gadget has been released from its 

collapsed state. 

 

The return value is ignored. 

 

#NEXUSIISPLITTER_GRIPPERCLICKED 

 

Notification that the user has clicked a gripper. 

 

wParam = 1 or 2 to indicate which child gadget will be collapsed if the default 

behaviour of collapsing alternating gadgets is allowed. 

 

The message doubles as a request for additional information regarding which child 

gadget should be collapsed. Return one of the following to direct the action which 

should be taken : 

 

• #NEXUSIISPLITTER_ANCHORFIRSTGADGET 

 

• #NEXUSIISPLITTER_ANCHORSECONDGADGET 

 

• non-zero to alternate the collapsing of the two child gadgets. This is the 

default behaviour. 

 

• Zero to halt the processing of this message. No gadget will be collapsed. 

 

 



Page 8 

#NEXUSIISPLITTER_GADGETSRESIZED 

 

Notification that the two child gadgets have been resized due to user action (e.g. 

repositioning the slider) or through code. 

 

wParam = height (or width if using a vertical splitter) of the first gadget (or it’s 

allotted space if there is no such gadget). 

 

lParam = height (or width if using a vertical splitter) of the second gadget (or it’s 

allotted space if there is no such gadget). 

 

The return value is ignored. 

 

#NEXUSIISPLITTER_CUSTOMPAINT 

Advanced users only. 

 

Sent immediately prior to Nexus II painting the slider margins (and the slider itself)  

and allows the host application to paint directly into the splitter window. It is sent 

after the BeginPaint_() call. 

 

This is useful for splitters which do not utilise child gadgets, but paint their content 

directly etc. 

 

wParam = HDC (a handle to a device context) into which the host application 

should paint. 

 

lParam = *ps.PAINTSTRUCT. 

 

The return value is ignored. 

 

 


