
SimpleOOP – Opensource OOP Plugin

Einführung

SimpleOOP brings PureBasic an easy to use OOP support without complicated syntax and a special

emphasis on clear and simple code.

SimpleOOP is Opensource (see License.txt) to avoid problems with future Purebasic versions and

nobody has to worry that the plugin does not work anymore because of a new Purebasic update.

To install SimpleOOP, simply run the "SimpleOOP Installer.exe". After the installation you can start

working immediately. The installer does all the installation.

For the first start, it’s the best to read this manual and also try the Examples in the supplied Examples

Folder, where all commands are explained, too.

greets

Sirhc.ITI

Manual Installation – PureBasic IDE

- Rename the file "PBDebugger.exe" to "_PBDebugger.exe" in the folder "PureBasic\Compilers\".

And afterwards copy the supplied "PBDebugger.exe" in the folder.

- Copy "SimpleOOP.res" into "PureBasic\Residents\"

- Copy "SimpleOOP.exe" to a convenient place and then create the following entries in the IDE

Configure Tools: (SimpleOOP.exe)

1.

- Name: SimpleOOP Debug Start

- Arguments: DebugStart "%CompileFile" "%CompileFile" "%Path" Format

- Working Directory:

- Event to trigger the tool: Before Compile/Run

- Settings: "Wait until tool quits" activated

2.

- Name: SimpleOOP Debug Stop

- Arguments: DebugStop "%CompileFile" "%Executable" "%Path" Format

- Working Directory:

- Event to trigger the tool: After Compile/Run

- Settings: "Wait until tool quits" deactivated

3.

- Name: SimpleOOP Compile Start

- Arguments: CompileStart "%CompileFile" "%CompileFile" "%Path" ""

- Working Directory:

- Event to trigger the tool: Before Create Executable

- Settings: "Wait until tool quits" activated

4.

- Name: SimpleOOP Compile Stop

- Arguments: CompileStop "%CompileFile" "" "%Path" ""

- Working Directory:

- Event to trigger the tool: After Create Executable

- Settings: "Wait until tool quits" activated

Info

- You can leave out the argument "Format", if you want to see the converted code in the Standalone

GUI Debugger

- You can add the SimpleOOP Keywords in the IDE Settings under "Custom keywords", "folding" and

"identation"

- While holding the "Control“ key during start of the Compilation process, the converted code will be

opened afterwards

- Copy "SimpleOOP ClassViewer.exe" to a convenient place and then create the following entries in

the IDE

Configure Tools: (SimpleOOP ClassViewer.exe)

1.

- Name: SimpleOOP ClassViewer

- Arguments: "%TempFile”

- Working Directory:

- Event to trigger the tool: Menu Or Shortcut (Strg + 1)

- Settings: "Wait until tool quits" deactivated

2.

- Name: SimpleOOP ClassViewer AutoCompleteOnBackslash

- Arguments: AutoCompleteOnBackslash

- Working Directory:

- Event to trigger the tool: Editor Startup

- Settings: "Wait until tool quits" deactivated

Info

- You can leave out the tool "SimpleOOP ClassViewer AutoCompleteOnBackslash", if you don’t want

automatic Autocomplete when typing a "\"

- You can add the SimpleOOP Keywords in the IDE Settings under "Custom keywords", "folding" and

"identation"

Manual Installation – jaPBe IDE

- Rename the file "PBDebugger.exe" to "_PBDebugger.exe" in the folder "PureBasic\Compilers\".

And afterwards copy the supplied "PBDebugger.exe" in the folder.

- Copy "SimpleOOP.exe" to a convenient place and then create the following entries in the IDE

Werkzeuge konfigurieren: (SimpleOOP.exe)

1.

- Name: SimpleOOP Debug Start

- Arguments: DebugStart "%CompileFile" "%CompileFile" "%Path" Format

- Working Directory:

- Event to trigger the tool: Before Compile/Run

- Settings: "Wait until tool quits" activated

2.

- Name: SimpleOOP Debug Stop

- Arguments: DebugStop "%CompileFile" "%Executable" "%Path" Format

- Working Directory:

- Event to trigger the tool: After Compile/Run

- Settings: "Wait until tool quits" activated

3.

- Name: SimpleOOP Compile Start

- Arguments: CompileStart "%CompileFile" "%CompileFile" "%Path" ""

- Working Directory:

- Event to trigger the tool: Before Create Executable

- Settings: "Wait until tool quits" activated

4.

- Name: SimpleOOP Compile Stop

- Arguments: CompileStop "%TempFile" "" "%Path" ""

- Working Directory:

- Event to trigger the tool: After Create Executable

- Settings: "Wait until tool quits" activated

Werkzeuge konfigurieren: (SimpleOOP ClassViewer.exe)

5. (Werkzeug wird Manuel aus dem Menü Gestartet)

- Name: SimpleOOP ClassViewer

- Arguments: "%TempFile”

- Working Directory:

- Event to trigger the tool: Menu Or Shortcut (Strg + 1)

- Settings: "Wait until tool quits" deactivated

Info

- You can leave out the argument "Format", if you want to see the converted code in the Standalone

GUI Debugger

- You can add the SimpleOOP Keywords in the jaPBe IDE Settings under "Custom keywords",

"folding" and "identation"

- While holding the "Control“ key during start of the Compilation process, the converted code will be

opened afterwards

ClassViewer

The ClassViewer has two functions, first is to show all classes of the source code with all included

files. And on the other hand it’s an Autocomplete tool that shows the class of the selected object.

You can start the ClassViewer manual in the IDE. The ClassViewer lists all classes and his Attributtes,

Methodes etc.

If you move your cursor in the code behind a Backslash (e.g. "*Obj\", "Parent\", "This\"), then the

Classviewer shows you an Autocomplete list, if the selected object has a class.

If you have activeted the IDE Tool "SimpleOOP ClassViewer AutoCompleteOnBackslash", then the

Autocomplete list automatically opens after typing a Backslash, if the selected object has a class.

The autocomplete lists shows only the content of the class that is visible at the current scope in the

source code, it means private or protected methods/attributes will be automatically be shown/hidden.

This even works with nested objects (e.g. "This\obj\obj2\").

If the autocomplete/class list is open, you can simply select an entry by writing the name or "Arrow

up/down" on your keyboard. Double click or press return, to insert the entry at the current position in

the IDE.

If you start the ClassViewer when you’re behind "NewObject.Class" with the cursor, then the init

parameter will be inserted in the IDE, if they exist.

By right clicking on a Method, Attribut or Procedure in the ClassViewer, you can jump to the line in

the source code.

By right clicking on a node in the ClassViewer, it will collapse all other nodes and expand the current

one.

Polymorphie

In SimpleOOP you have the possibility to overwrite methods (Attributes can’t be overwritten). The

child method always overwrites the parent method. When you overwrite methods, keep in mind that

the return type and parameters are the same. It’s possible not to do that, but that could lead to

problems… e.g. if a parent class wants to call a method which is being overwritten by a child method,

but the parameters of the child method has been changed, that could course IMA’s. You also can’t

overwrite a parent method which has a different scope type e.g. both methods must be public or

protected, a public method can’t overwrite a protected and vice versa.

Keywords

- Singleton

- Class/EndClass

- Abstract

- Private/BeginPrivate/EndPrivate

- Protect/BeginProtect/EndProtect

- Public/BeginPublic/EndPublic

- Method/MethodReturn/EndMethod

- Parent

- This

- NewObject

- FreeObject

- _ (Multiline support)

Attributes

Attributes are like variables in a structure. Arrays, Maps and Lists are supported in classes, too.

Example:

Class MyClass

Val.l

A.q

B.f

String$

Map Tools()

List MyList()

Array MyArray(5)

EndClass

Singleton

- Makes the class static

- On every NewObject, it returns the first initiated object

- The constructor Init() will only be called on the first NewObject

- FreeObject will be ignored, the destructor Release() will not be called

Example:

Singleton Class MyClass

Method Test()

 ; Code

EndMethod

EndClass

Class/EndClass

- Like Structures, supports Extends

- Methods will be written directly in the class

- Prototypes can be written directly in the class

- You can set a startup value for attributes

Example:

Class MyClass

String$

Val.l = 123

 List MyList()

 Map MyMap()

 Array NewArray(5)

Public Method Test()

 ; Code

EndMethod

Prototype.i Proc(Num.d, *Pointer)

EndClass

Abstract

- For creating of abstract methods

- Abstract methods must be overwritten by their child methods, otherwise you can’t initiate the class

Example:

Class MyClass

String$

Val.l

Abstract Test()

 Public Abstract DoThat(Val.l, String$)

EndClass

Private/BeginPrivate/EndPrivate

- For private attributes and methods in classes

- Private attributes or methods can only be called in their own class

- On default, all objects in a class are private, this keyword is basically only for a better overview

Example:

Class MyClass

String$; Is private, too

BeginPrivate

 Val.l

EndPivate

Private Method Test()

; Code

EndMethod

BeginPrivate

 Method Proc()

; Test

 EndMethod

EndPrivate

EndClass

Protect/BeginProtect/EndProtect

- For protected attributes or methods in classes

- Protected attributes or methods can only be called from their own class or a child class

Example:

Class MyClass

Protect String$

BeginProtect

 Val.l

EndProtect

Protect Method Test()

; Code

EndMethod

BeginProtect

 Method Proc()

; Test

 EndMethod

EndProtect

EndClass

Public/BeginPublic/EndPublic

- For public attributes or methods in classes

- Public attributes or methods can be called from everywhere in the code

Beispiel:

Class MyClass

Public String$

BeginPublic

 Val.l

EndPublic

Public Method Test()

; Code

EndMethod

BeginPublic

 Method Proc()

; Test

 EndMethod

EndPublic

EndClass

Method/MethodReturn/EndMethod

- Like procedures

- You can work with the keyword "This" inside

- Methods are written directly in the class

Beispiel:

Method.s Test()

; Code

MethodReturn "Hallo"

EndMethod

Parent

- To call a parent method of a method

- Please note that when other methods are called in the parent method, the parameters of the parent

methods must be the same like the current ones (See chapter Polymorphie)

Example:

 Class Second Extends First

Method.s Test()

Parent\Test() ; Calls Test() in Class First

EndMethod

 EndClass

This

- To access the own class content in methods

- You can als write *This

Example:

Method.s Test()

Debug This\Val

EndMethod

NewObject

- To create class objects

- supports Objects, Arrays, Lists, Maps…

- Objects have to start with an "*"

- The constructor method "Init()" will be called, if exists

- You can pass parameters to "Init()" after "NewObject"

- You have to declare the class that will be initiated after "NewObject"

Example:

*Object.MyClass = NewObject.MyClass

Dim *Array.MyClass(10)

For I=0 To 10

*Array (I) = NewObject.MyClass()

Next

NewList *Liste.MyClass()

AddElement(*Liste())

*Liste () = NewObject.MyClass

*Object.MyClass = NewObject.MyClass("String", 123)

FreeObject

- Deletes the object

- The destructor method "Release()" will be called, if exists

- Sets the object automatically to 0

- Please note, if you free "This", the object outside the scope, will not be set to 0, because the "This"

Pointer is handed by "byVal"

Example:

*Object = FreeObject

*Array(3) = FreeObject

This = FreeObject

ForEach *Liste()

*Liste () = FreeObject

DeleteElement(*Liste())

Next

_ (Multiline support)

- To split a command to multiple lines

- You can split a command on as much lines you want to

- If an error occurs on a splitted line, the debugger will highlight the first

Example:

OpenWindow(0, 0, 0, 640, 480, _

 "PureBasic Window", _

 #PB_Window_SystemMenu | _

#PB_Window_MinimizeGadget | _

#PB_Window_MaximizeGadget | _

#PB_Window_ScreenCentered)

Repeat

Event = WaitWindowEvent()

If Event = #PB_Event_CloseWindow

End

EndIf

ForEver

