
COM in PureBasic
Part 1 — The Basics

by Timo ”freak” Harter
purebasic@freak1.de

April 30, 2007

Contents

1 Introduction 3

1.1 About this Tutorial . 3

1.2 COM – What is it anyway? . 4

1.3 Basic design principles . 4

1.4 Classes, Objects, Interfaces . 5

1.5 Articles for further reading on COM . 5

2 What you need – PB language constructs for COM access 6

2.1 Interfaces in PureBasic . 6

2.2 Handling GUID values . 6

2.3 Where to find information . 6

2.4 Useful tools to work with . 6

2.5 A first example . 6

3 The heart of COM – The IUnknown interface 7

3.1 Lifetime of an Object . 7

3.2 Querying for other Interfaces . 8

3.3 Rules for QueryInterface . 9

4 Calling COM methods – Parameter and return types 10

4.1 Method return codes . 10

4.2 Strings in COM . 11

1

4.3 Passing Interface pointers . 12

4.4 The VARIANT data type . 13

2

Chapter 1

Introduction

When i first started with PureBasic (and programming for windows in general), it was
great to explore what was possible using calls to the Windows API. I could start playing
around with the API commands one by one, not needing to get them all right at once,
as PureBasic provided the perfect framework to still easily create a working program.

At one point though i always hit a wall: To do something more advanced, there was
sometimes the accessing or creating of a COM interface required to do some task. Usually
allready the description of the methods in question made me abandon the project, as
they talked about, and required knowledge of a much larger concept which is COM.
The few example codes that were around on that topic back then dealt with specific
problems, and i was usually not able to make too much sense of them either (at least
not in a way that i could write code to do some completly different task based on it)
So i had to learn it all the hard way. Although there is much more code on this topic
around on the PureBasic forums these days, most of it is written for a specific task as
well, and it is not too easy to learn the general concepts from them.

This series of tutorials is intended to fill this gap. My hope is that it will give a good
overview over the general stuff and underlying concepts and allow you to make your first
steps in COM without the need to find it all out on your own.

1.1 About this Tutorial

What you need to know: This tutorial is not for the beginners with the PureBasic
language. You should be familiar with it to a point where you can write more than just
small test programs. Especially some knowledge on using pointers and working with
memory buffers is absolutely required. Also at least a little prior experience with the
Windows API will be helpfull. You need no prior knowledge about COM itself. I’ll try
to cover all that is needed there in these tutorials.

3

What you will learn here: This tutorial is intended to provide a basic overview
about COM. What its general concepts are and how to do the basic stuff. After reading
it, you should be able to better understand the COM related code others allready posted
on the forum, as well as take your first steps in creating your own code for accessing
COM stuff.

Later tutorials will deal with some larger fields of COM (like the Shell Namespace, the
MSHTML models for the WebGadget or something similar), and are intended to deepen
this knowledge with specific examples and explanations on a larger area of COM. Finally
i hope to write a tutorial on how to create your own ”components” to use with COM.

What you will not learn here: COM is a big field. I cannot teach you how to solve
a specific problem or work with a specific interface. That would be of no use. The later
tutorials will be a bit more specific than this one, but still quite general.

What i am trying to teach you is the stuff you need to know to be able to understand
the COM related documentation, so you can solve the problem at hand yourself. After
that, its up to you to read the given documentation carefully, and then simply try it.
Believe me, it gets easier over time, as the basic concepts repeat themselves quite a lot
and just need some getting used to.

1.2 COM – What is it anyway?

TODO

1.3 Basic design principles

I want to list here a few basic design principles of COM, and what significance they
have for working with COM.

COM is a binary standard, not a source standard: COM specifies how to
interact with components on a binary level. (This means it defines how to call methods
etc in the compiled form, not relying on the specific source construct of a programming
language, like C++ classes for example.) This way it is completly independent from
programming languages. Any language that supports indirect function calls through
pointers can create and interact with COM components. It does not matter what
language the component is written in, communication with it is always the same way.

Access to components is done through interfaces, and only through that:
Other than other object oriented frameworks, in COM your only access to a component
are the interfaces that it provides. There is no way to directly access other data on the

4

component from the outside (which is possible with public variables in a Java class for
example).

This completly hides the implementation from the caller, which allows to exchange the
implementation behind an interface without the need to change anything on the client
side, and it also allows COM to provide the possibility to access components in other
processes and even on other computers as if they existed in the own application. (This is
achieved by a concept called ”marshalling”, where COM creates a fake interface on your
side to take your calls, then sending them over the network to where the real component
is located. Both the client and the component can be written as if their respecitive
counterpart is located in the own application, and COM does all the work inbetween.)

Interfaces are accessed through a GUID, not by name: A GUID is a 128bit
identifier that uniquely identifies each interface (I explain more about GUIDs in the
next chapter) By not using names to access an interface or method, naming conflicts
cannot happen between different components.

Interfaces have a fixed set of methods: This eliminates versioning conflicts.
Once an interface is created and is assigned a GUID, this id represents this interface as
it is. There cannot be a ”newer version” of the same interface that has more or different
methods, which would lead to a problem when somebody expects the old version of
the interface and gets the new one or vice versa. Instead, to extend the features of
a component, a new interface is created (it can contain the old one if that is desired)
with a new GUID. Since components can export multiple interfaces (see the chapter on
IUnknown) it is easily possible to both support the new and old functionality (through
exporting both interfaces) The point is that if a client requests an interface, he will
either get exactly what he requests, or a failure. He cannot get something that looks
like what he wanted, but is in fact different (a different version etc)

1.4 Classes, Objects, Interfaces

TODO

1.5 Articles for further reading on COM

TODO

5

Chapter 2

What you need – PB language
constructs for COM access

TODO

2.1 Interfaces in PureBasic

2.2 Handling GUID values

2.3 Where to find information

2.4 Useful tools to work with

2.5 A first example

6

Chapter 3

The heart of COM – The
IUnknown interface

A basic principle of COM is that all interface extend the so called IUnknown interface.
This means that you always have 3 methods available, no matter what interface you
deal with. (In fact, you do not even need to know what interface you are dealing with.
This is a very important point) These 3 methods are QueryInterface(), AddRef() and
Release(). Their purpose is to manage the lifetime of the object, and to ask the object
what other interfaces it supports.

3.1 Lifetime of an Object

Managing the lifetime of an object is a basic question, that any object oriented frame-
work must address. Lets say you are the one who created the object, then you would
also know when you do not need it any longer. That is quite simple. What happens
now if you pass a pointer to your object to another function ? It may store your pointer
for future use. Who knows when it will no longer be needed then ?

COM solves this problem by letting the object itself handle its lifetime. The object
itself keeps a count of the so called ”references” to it (anyone holding a reference to an
interface can call its methods). AddRef() increases this count and Release() decreases
it. They both take no arguments. Whenever the count reaches 0, the object must delete
itself (ie free all resources it allocated).

When an object is first created, its reference count is 1 (the reference that the creator
holds). Whenever the creator of the interface passes the pointer to somebody else (a
function or method for example), the one who received the pointer can then call the
AddRef() method to get a reference themselves. As long as you hold a reference to an
object, you can be sure that it is still valid to call methods on its interfaces. Whenever
the object/interface is no longer needed, somebody holding a reference calls Release()
to drop his reference. The creator of the object must call it once as well, to drop the
initial reference he got when creating the object.

7

You see that it now does not matter if the creator of the object calls Release() while
somebody else still needs the object. The creator simply drops his reference to the
object, decreasing its reference count, but the other references still exist, so the object
is not freed. The object is freed when nobody is using it anymore (when the reference
count drops to 0).

Handling the references you have to COM objects properly is important. If there is a
bug (one Release() too much or less for example) two things can happen: Either the
object is never freed, because the reference count does not reach 0, or it is freed too
early, because Release() was called for for a reference that belongs to someone else. So
getting this right is important.

You need to call Release() in all these cases:

• for each object you created

• for each AddRef() call

• for each successful QueryInterface() call (as it increases the reference count as
well, see the next section)

• for all interfaces that you receive from another function or method call. (unless
otherwise noted in the documentation)

The convention here is that a function/method returning an interface pointer will
increase its reference count, while when you pass an interface to a function/method.
The receiving function will call AddRef() itself. This is just a convention, but most
COM related functions/methods comply to it. Where this is not the case, it is
usually well documented.

Note: Both AddRef() and Release() return the new reference count for the object
after the call, but you can only really use this return value for debugging purposes. The
remaining references belong to somebody else, so even though you may know that the
reference count is not 0 yet (and thus the object still exists), it is not save to continue
calling methods on the object, as you gave up all control of the object lifetime when
you released any references you held. (the other holders can drop their references at any
time, causing the object to be freed.)

3.2 Querying for other Interfaces

A typical object supports more than one interface. Different interfaces are used to
support different types of actions. The QueryInterface() method has two important
functions: It allows access to different interfaces on the same object, and it provides a
save way to check which functionality an object supports.

Syntax:
QueryInterface(*IID, *Object)

8

*IID is a pointer to an IID that represents the interface you are requesting. *Object
must be the pointer to a variable that will receive the new interface pointer on success.
If successful, the method fills your object pointer with the pointer to the requested
interface, increases the reference count of the object and returns #S OK. (The reference
count is increased because you now have a reference to the old interface and one to the
new interface) If the interface is not supported, the method returns #E NOINTERFACE.
You must always be prepared for the fact that the interface you request is not available.

This way of accessing different functionality on one object has a number of advantages.
It provides a save way to ask for a given functionality from an object, and especially
a reliable way for the object to tell you if something is not supported. Lets say you
try to query some ”new” interface that was not present at the time the object you are
working with was developed. This method tells you whether or not the interface is
available without the risk of a crash that would result from just trying to call a function
or method that is not there.

Since IUnknown is the base for every COM interface, you actually do not need to know
anything about an interface pointer you receive (except that it is a COM interface),
as you can request any interface through the QueryInterface() method and then you
know whether the functionality you are looking for is actually present. Mostly you will
know of course what interface you are receiving from a given function/method call and
you do not need to query for it specifically, but this is still a very useful feature.

3.3 Rules for QueryInterface

There are some rules for QueryInterface() which all COM object must fulfill, and
which are interesting from the caller’s standpoint:

• A query for IUnknown must always be successful, and any query for this interface
from one object must return the same pointer.

Note that this is only true for the IUnknown interface. If you query twice for
another interface, you are never guaranteed that the returned pointer will be equal.
The fact that with IUnknown you are guaranteed that the returned pointer will be
the same as long as you do the query on the same object allows you to compare
if two interface pointers you have (of any kind) belong to the same object. Just
query for IUnknown on both these interfaces and check if the result matches.

• The list of supported interfaces on any object must be static, not dynamic.

This means if a query for a specific interface was successful once, it must succeed
again as long as the object exists. There can be no condition where a query only
works in certain conditions.

• Queries for interfaces must be reflexive, symmetric and transitive.

This means in essence that you can query for every interface that a given object
supports from any interface pointer to that object.

9

Chapter 4

Calling COM methods –
Parameter and return types

4.1 Method return codes

A usual COM method returns a value of the HRESULT type. The corresponding PureBasic
type is a Long. The predefined error codes for COM are all negative, so as a general
rule, all negative return values can be interpreted as an error, while a return value of 0
or bigger indicates success.

The full list of possible error codes together with a short description is listed in the
WinError.h include file which is included with the Platform SDK. PureBasic should
know most of the constants defined there. The debugging functions of my COM Frame-
work include a GetCOMErrorConstant() and GetCOMErrorMessage() function to help
you identify error codes while developing.

Each COM method has its individual set of possible return values defined in its doc-
umentation, so make sure you look them up for the methods you use. For most of
the methods though, the value #S OK (equals 0) indicates success. Sometimes also the
constant #NOERROR is used in documentation, which is the same value. There are some
other return values that are quite common, so i will list them here:

#S OK Operation successful

#S FALSE Not an error code (value 1), but a common value to indicate a ”false” status

#E NOTIMPL The called method is not implemented in this interface

#E INVALIDARG One of the arguments passed to the method is not accepted by the
method

#E OUTOFMEMORY Not enough memory to allocate needed data

#E FAIL Operation failed (unspecified reason)

10

#E ABORT Operation aborted

#E UNEXPECTED Unexpected failure

Note that this interpretation of the return value (interpreting 0 as success and < 0 as
failure) is different from how PB does it in its functions for example, so a common source
of bugs is to not check for something like #S OK, but instead simply for a nonzero result
(which of course check for an error then and not for success). So keep this in mind.

4.2 Strings in COM

COM uses almost exclusively unicode to represent its strings. The most common string
type is the BSTR type, although also other unicode types are sometimes used, and very
rarely, also ansi strings. ”Normal” unicode strings are usually marked as the type
LPWSTR, LPOLESTR or similar. The can be handled directly as PB strings when you
compile in unicode mode, and easily converted with PokeS() and PeekS() if you compile
in ascii mode. The handling of the BSTR type will be discussed below.

Creating a BSTR string: A BSTR string is a string in the same format as PB’s
unicode strings, but allocated with a special API function SysAllocString (). So if
you compile your program in unicode mode, all you need to do is call that allocation
function with a pointer to a PB string. If you do not compile in unicode mode, you first
need to translate the string into unicode with the PokeS() function before turning it
into a BSTR string.

The procedure below should do the conversion in any case:

1 Procedure.l MakeBSTR(String.s)
2 Protected Result = 0
3 CompilerIf #PB_Compiler_Unicode
4 Result = SysAllocString_(@String)
5 CompilerElse
6 Protected *Buffer = AllocateMemory(Len(String)*2 + 2)
7 If *Buffer
8 PokeS(*Buffer , String , -1, #PB_Unicode)
9 Result = SysAllocString_ (* Buffer)

10 FreeMemory (* Buffer)
11 EndIf
12 CompilerEndIf
13
14 ProcedureReturn Result
15 EndProcedure

Note that the PokeS() part actually works in unicode mode as well, as the string will
simply be poked unchanged, but the first solution is of course much faster in unicode
mode.

11

Reading a BSTR string: Since the unicode representation of the BSTR type and
PB are the same, they can directly be read with the PeekS() function. Just remember
to use the #PB Unicode flag when you do not compile in unicode mode to correctly read
the string.

Note: As a BSTR string is specifically allocated with SysAllocString (), it must
also be freed with a function called SysFreeString (). You need to do this both for
BSTR strings received from a method call as well as for those you created to pass to a
method. (The method will create its own copy if it needs to store the string.

PureBasic actually makes passing strings to a COM interface very easy, as it provides
an automatic conversion for the above through the so called ”Pseudotypes” (p-bstr
and p-unicode). If an interface parameter is defined of this type, you can simply pass
a normal PB string, and PureBasic will automatically do this conversion for you. This
is supported almost everywhere where a string is passed to a method (You can look at
an interface in the IDE’s Structure Viewer, and if the parameter is defined as p-bstr
or p-unicode, the automatic conversion is done.) You will still need to manually create
the string if it is requested inside a structure like the VARIANT structure.

When a method returns a string (typically a BSTR one), it asks you to provide a
pointer into which it will fill the string. Here no automatic conversion is supported.
What you need to do here is pass a pointer to a long variable, which will be filled with
the BSTR pointer. Then you can use PeekS() to read the string. Then do not forget
SysFreeString () of course.

Example:

1 If MyObject\SomeMethod(@bstr_sting) = #S_OK
2 Debug PeekS(bstr_string , -1, #PB_Unicode)
3 SysFreeString_(bstr_string)
4 EndIf

4.3 Passing Interface pointers

Often a method requires an ”interface pointer” as a parameter. Either to access the given
interface, or to return a newly created interface through this pointer. Lets say we have
an interface variable called MyInterface.ISomething, what should be the parameter
now? MyInterface or @MyInterface ?

The COM related documentation (mainly the Platform SDK) use C (or rarely C++) to
show the required parameters. In C, an interface is always a pointer, so when the param-
eter definition looks like ”ISomething *argname”, you only need to pass MyInterface.
If the documentation looks like ”ISomething **argname”, what is requested is a pointer
to the interface pointer, so you have to pass @MyInterface.

In terms of functionality, MyInterface is the interface itself. Passing it to the method
allows the called method to access the interface (call its method), but it cannot modify

12

your interface variable, as a copy is made when it is passed to the method. So if the
method needs to modify your variable (to pass back a newly created interface through it
for example), it will need a pointer to your interface variable, so by writing at that pointer
location, it can actually change your variable. There you need to pass @MyInterface,
which is the pointer to your variable. The latter one is the case for QueryInterface()
for example, where the new interface is returned through the second argument. See the
chapter on IUnknown for an example.

So the rule of thumb is: If the method only works with the interface, there is no ”@”,
if the method needs to change the value (usually to return a new interface), the ”@” is
required.

4.4 The VARIANT data type

If you look up the definition of the VARIANT data type in the Platform SDK, it will look
quite scary. It is a huge structure with a union inside containing many weird fields.
That alone made me try to avoid using it for quite a while.

In truth, the concept is quite simple: VARIANT is a structure used in places where more
than one type of variable may be possible as an argument. It has one member called
”vt”, which defines which field of the union to use (with the #VT ... set of constants),
and then the union, of which only one field is used at a time.

Lets start with an example:

1 Define var.VARIANT
2 var\vt = #VT_I4
3 var\lVal = 123

What we created here is a valid VARIANT structure containing a #VT I4 (4 byte integer,
same as Long in PB) value of 123. The SDK tells you which union field to use for which
vt type.

Here is a list of the most common used vt types, and which union field to use for them.
This list should be enough for the common cases. In the rare cases where you need
something else, look it up in the SDK. (see ”VARIANT and VARIANTARG” in the
index)

#VT EMPTY Empty value. No field is in use.

#VT BOOL A boolean value is in the boolVal field. Only #VARIANT FALSE (0) or #VARIANT TRUE
($FFFF) are valid.

#VT BSTR A BSTR string is in the bstrVal field. Note that such a string must be freed
with SysFreeString () when the VARIANT is no longer needed.

#VT I1,#VT I2,#VT I4,#VT I8 A signed integer of 1,2,4,8 bytes is in the cVal, iVal,
lVal, llVal field respectively. These directly correspond to the Byte, Word,
Long, Quad datatypes in PB.

13

#VT UI1,#VT UI2,#VT UI4,#VT UI8 Same as the #VT Ix types, except these are un-
signed and the fields bVal, uiVal, ulVal, ullVal are used.

#VT INT, #VT UINT Signed and unsigned integer (4byte on 32bit platforms, 8byte on
64bit ones), stored in the intVal, uintVal fields.

#VT R4, #VT R8 4 and 8 byte float types. Fields are fltVal and dblVal. These corre-
spond to the Float and Double types of PB.

#VT UNKNOWN, #VT DISPATCH The VARIANT contains an IUnknown or IDispatch pointer
in the punkVal and pdispVal fields. You have to call the Release() method on
these if you received such a VARIANT.

#VT BYREF This is a special modifier that is combined with another type to indicate
that the VARIANT only stores a pointer to the given value. The fields used then
are the same as a above, only with a preceding ”p” to indicate a pointer.

Note that #VT EMPTY has the value 0, so since PB initializes all new variables/structures
to 0, a newly created VARIANT structure in PB is allready of type #VT EMPTY. (There is
no need to initialize it to that like there is in other languages)

Creating a VARIANT of any such type is straight forward. What do we do though if a
method fills in a VARIANT for us, and the contained value can be of any type ? Do we
have to write code to handle every possibility then ? Fortunately no. COM provides a
set of functions to deal with the VARIANT type in a simple matter.

There are actually quite a number of functions make various conversions and calculations
directly on the variant type (for example, VarMul (), VarCmp () or VarPow () to name
a few) and also a number of functions to make any type of conversion between VARIANT
contents such as VarBstrFromBool () for example. I will only focus on these that can
deal with any type of VARIANT and are useful to deal with VARIANT structures received
from methods. If you ever need a specific conversion function, just look it up.

VariantClear (*variant) :
This function takes the pointer to a VARIANT structure and frees whatever it contains.
If the content is a BSTR, SysFreeString () is called, if it is an interface pointer,
Release() is called on it etc. This is useful for any VARIANT type that you have no code
for to handle, or generally for any VARIANT structure that is no longer needed.

VariantCopy (*destination, *source) :
This function copies the source VARIANT to the destination. It copies a BSTR string,
calls AddRef() on interfaces etc, so that the copy is later independant from the source
structure. This function also calls VariantClear () on the destination before making
the copy, freeing any old data in the destination.

VariantChangeType (*destination, *source, flags, vt) :
This function converts the source VARIANT to the vt type given by the ”vt” parameter
and puts the result in the destination. Source and destination can be equal in which
case the conversion is done in place. ”flags” can modify the behaviour a bit, but i will
not discuss them here. It is important to check the result of this function (it is of type

14

HRESULT), as the conversion may fail (you cannot convert a string to an IDispatch
for example.)

Below is an example of how to use this function to handle a variety of variant types with
little code:

1 Procedure.s VariantString (*var.VARIANT)
2 Protected Result.s = ""
3
4 ; do an in -place conversion to a BSTR
5 If VariantChangeType_ (*var , *var , 0, #VT_BSTR) = #S_OK
6 Result = PeekS(*var\bstrVal , -1, #PB_Unicode)
7 VariantClear_ (*var)
8 EndIf
9

10 ProcedureReturn Result
11 EndProcedure

Since a conversion to a string is almost always possible, this is an easy way to handle any
type of variant that you receive from a method without much work. Note that this also
frees the passed variant, as an in-place conversion is done and then VariantClear ()
is called with it. If this is not desired, simply do the conversion to a new VARIANT
structure.

In a similar way, you could change the type to #VT I4 to easily read it as a Long, no
matter which numeric type (I1, I2, I4, UI1, ...) the VARIANT actually had.

Knowing how to create a VARIANT of a specific type, and with these functions to handle
any type of them, working with VARIANTs is not that hard anymore. It is only important
to keep in mind to always free the more complex types (BSTR, interfaces) when no longer
needed to avoid memory leaks. The basic types (I1, I2, I4 etc) do not need a special
free call of course.

Sidenote: Unlike other structures which are usually passed to a method or API function
as a pointer, the VARIANT structure is often expected to be put fully on the stack. Since
the structure is 16 bytes, that presented a problem to earlier versions of PureBasic, as
this kind of thing was not supported. Since 4.0, there is the p-variant pseudotype,
which handles that. The COM interfaces allready predefined in PB make use of that
whenever needed, so you do not have to concern yourself with this problem. Just use
the VARIANT structure like you would use any other variable in an argument to a functin
call.

15

	Introduction
	About this Tutorial
	COM -- What is it anyway?
	Basic design principles
	Classes, Objects, Interfaces
	Articles for further reading on COM

	What you need -- PB language constructs for COM access
	Interfaces in PureBasic
	Handling GUID values
	Where to find information
	Useful tools to work with
	A first example

	The heart of COM -- The IUnknown interface
	Lifetime of an Object
	Querying for other Interfaces
	Rules for QueryInterface

	Calling COM methods -- Parameter and return types
	Method return codes
	Strings in COM
	Passing Interface pointers
	The VARIANT data type

