What is USB Enumeration?

Enumeration is the process by which a USB deviceis attached to a system and is assigned a specific
numerical address that will be used to access that particular device. It is aso the time at which the USB
host controller queries the device in order to decide what type of deviceit isin order to attempt to assign an
appropriate driver for it.

Some of the basic commandsissued by the host to the device are:

= Set Address — Instructs the device change it’s current address settings

Get Device Descriptor — Overall information about the device (manufacture, firmware version ...)
Get Configuration Descriptor — How the endpoints will be used

Get Interface Descriptor — Various different interface that the device may use

Get String Descriptor — Unicode strings for Manufacture and Product

This processis a fundamental step for every USB device, fore without it, the device would never be ableto
be used by the OS.

What does enumeration look like?

| believe the easiest way to explain the USB enumeration processis to show it happing. The CamConnect
demo firmware, for obvious reasons, contains code that will alow it to enumerate on any USB system. By
using traces taken using a CATC USB Analyzer and snippets of code take from the CamConnect firmware
source code, you should be able to following and understand the enumeration process.

Initially plugging in of the device:
All USB devices are plugged into a hub of some sort. When thisis done, the hub detects whether the device
isafull speed or low speed device. Thisis signified by the device pulling

Host the D+ line to a 3.3v volt supply through a 1.5k pull-up for afull speed
Controller device, or the D- line for alow speed device.
Root HUB Once the hub has detected the connection of that new device, it will start

passing Start Of Frame (SOF) packets produced by the host down to the
device at Imsintervals. The host controller will also start issuing setup
packets to the device in order to enumerate the new device.

|Device| | HUB |

| Device | | Device |

When adeviceisinitialy plugged in, it always uses the default device
address 0 for communication. During the enumeration process, the host
controller will assign a new numerical address for that device to use. Communication for the enumeration
process always uses endpoint 0 on the device. These are considered to be Control Transfers. All USB
Control transfers must use that device's endpoint O.

USB Connection Topology

After the host receives all the descriptors for the device, the OS will attempt to find an appropriate device
driver to be associated with that new device.

Start of Frame:

Thefollowing is an example of a SOF packet sent by the host at 1Ims intervals. This SOF packet is sent to
every device on the bus so that they may all be synched up. Every USB packet sent over the bus begins
with a Sync pattern in order to allow all devices to synchronize their transceivers. A CRC calculation for
that packet is also included for most packet types. The M16C USB hardware automatically takes care of
these details.

CRCS5 for token
+ packets, CRC16 for
This pattern produced Sync SOF Frame # [CRCS EOP data packets
a square wave in Host _Ls = ‘ By =
NRZI encoding —— | 00000001 | OxAS5 1200 |0Ox16 |2.50||154<4| EndofPacket

0xAS5 signifies that

I

this is a SOF packet

A

(Single I|Ended Zero)

Figurel. Start of Frame (SOF) Packet

SOF counter

Initial communication:

What first happens on the USB lines can be somewhat confusing to some new to USB. | myself was quite
confused at what | was seeing until someone explained it to me. Depending on how the USB host controller
was implemented, you might see bus traffic that you would normally assume to be incorrect, but in
actuality, it is a standard and necessary process for a USB host controller.

So what is this mystery? More or less, the USB Host Controller first ask the device before it does anything
elsefor it's Device Descriptor. The interesting part is that the device descriptor is 18-byte long, but the host
could care less about that and may only want the first 8 bytes of it. After it receivesthose, it will not even

ask for the rest of the data from the device. Further more, the host will issue areset for that line after which
it will then start to send commands for USB enumeration.

The reason the Host does this is because the Device Descriptor contains the maximum payload size that is
allowed for an endpoint 0 Control Transfer. This value is contained in the 8" byte of the Device Descriptor
that we must send back to the Host. So the host first queries the device with a GetDescriptor command in
order to just get this one piece of information. Once the host has determined that number, it resets the USB
lines and starts the enumeration process.

The packet traces below are showing that a setup token was the first thing given to our device on EPO that
instructed to return the Device Descriptor.

Host

Host

M30240

[Syne [paTao
00000001 | oxc3z [BON0EL00(0D)
— Device Descriptor designator
__ 5¥ync ACK Get Descriptor command
00000001 | Ox4B | 2.50|[171 USB Standard Request type

Figure2. Initial Get Descriptor Request from Host

Below you will see that our device returned the first 8 byte of the 18-byte descriptor, but instead of the host
issuing us another IN packet so that we could transfer another 8-byte data packet, it issues an OUT packet
followed by aNULL data packet. We ACK thistransition, then the host controller resets the USB lines.

Host

M30240

Host

Syr DATA CRC16 EOP
00000001 | oxpz2 [12 01 10 01 00 00 00(08), |oxeeeE|2.50]| 10
N 7
S ' MAX Packet size for EPO
= ACK First 8 bytes our
00000001 | oxae [2.50([151

Device Descriptor

Figure 3. Our Device Answering the Initial Get Descriptor Request

OuT

Host [~

QO0O00001 Oxg7

CATAL
oxD?2

Host [2Ele
QOO00001

M30240 ” L ALl
Q0000001 ox4B | 2.50||8762
SyYnc Frame &
00000001 | OxAS 1201 DxDQ 2.50 || 3866

. Syr SOF ENCESR ==
Host I Sync rame
_ODOO001 OxAS 1212 Ox04 | 2.50(|11965

Figure4. Host Resetting USB linesto begin enumeration

Host

Set Address:

For this enumeration process, the first command that was passed to the device was the Set Address
command. As mentioned before, a new USB device on the bus temporarily uses a device address of O
(zero) in order to provide a means of communication with the host. The host will then assign a specific
numerical address for that device to use so that it will contain a unique identity on the USB bus.

Below you will see that a setup packet is sent to Device O, Endpoint O, followed by 8 bytes of data that will
be used to determine what type of setup packet is being sent, and what values need to be assigned. The
M16C USB hardware contains aregister that maintains the current device address. The register defaultsto
0 after RESET, but can be written to at any time to change what address the USB hardware will respond to.
The M16C USB hardware automatically sends an ACK back to the host saying that the data was received
without error.

Host SETUP ADDR [E10: [CRCS| [EOP g
6

00000001 | OxB4
Host L SYNC DATAD
00000001 | OxC3

New Address for Device
Set Address Command

Tedn

M30240 | 2¥1E IS
00000001 | OxaB

|3.DD 183

Figure4. A Set Address command is sent to the device

Now lets take alook at how this packet is decoded in CamConnect’ s firmware.

The M16C’'s USB hardware will automatically accept and respond to device requests addressed to its
current device address. Since the address register is set to O at the beginning of enumeration, our device
will respond to all packet addressed to device 0.

Any time a USB packet is sent to a device address that matches our current device address, the M16C USB
hardware will generate an interrupt (USBF— USB Function Interrupt). The interrupt handler can then query
the USB registers to find out what caused the interrupt and respond accordingly.

Below isthe USB Interrupt Service Routine for a USBF Interrupt.

void USB I nt_Handler() {

/* Save and clear the current EP interrupts */

USB | nt Regl = usbi s1; /* USB Interrupt Status Register 1 */
USB_ | nt Reg2 = usbhi s2; /* USB Interrupt Status Register 2 */
/* Wite this value back in order to clear those interrupts */
usbi s1 = USB_I nt Regl;
usbi s2 = USB_I nt Reg2;
/* W will use the mrrored variables for checking endpoint interrupts*/
/* == Check for EPO Interrupt Status Flag ==*/
if(USB IntRegl & 01) {

Par seEPOPacket () ; /* Service EPO Request */

USB_| nt Regl &= OXFE; /* Clear USBINTO bit in mrror */

}

Asyou can see, we first save the Interrupt status registers, and then write the values back in order to clear
any bits that were set. We then use thisinformation to decide what endpoint caused the interrupt. Since this

isasetup packet, it would be Endpoint 0. We then call the appropriate function to handle this,
ParseEPOPacket(), which is shown below.

voi d Par seEPOPacket () {

i f(epOcsr0 !'=1) /* Check Qut Packet Ready flag for EPO set */
return; /* Fifo not ready to be read to return */

/* Read the out 8 byte header from EPO Fl FO*/
EPO_Header . bnRequest Type = epO0;

EPO_Header . bRequest = ep0;
EPO_Header . wal ueLow = ep0;
EPO_Header . wal ueH gh = ep0;
EPO_Header . Wl ndexLow = ep0;
EPO_Header . w ndexH gh = ep0;
EPO_Header . wLengt hLow = ep0;
EPO_Header . wLengt hHi gh = ep0;

/* Mask out all but request type (01100000) */
tnp_byte = EPO_Header . bnRequest Type;
tnp_byte &= 0x60;

switch(tnp_byte) {

case O: ProcessSt andar dReq() ; /1 USB Chapter 9 stuff
br eak;

case 0x20: Processd assReq() ; /'l Specific dass stuff
br eak;

case 0x40: ProcessVender Req() ; /'l Custom stuff

}

Above you can see that the 8-byte data packet that was sent was read out of endpoint O into avariable
structure. Note that every setup packet has the same 8-byte format in which datais sent. Once the datais
read out, it can be analyzed. Y ou can see that we look at bits 5 and 6 of the first byte, otherwise known as
the bmRequestType in USB lingo, in order to determine which type of request is being made. All USB

enumeration reguests are made via Standard Requests.

The function ProcessStandardRequest() that is shown below is then call which will then further decode the
packet data.

voi d ProcessStandardReq() {

/* Determ ne what is being requested */
swi t ch(EPO_Header. bRequest) {

case O: CrdGet St at us() ;
br eak;
case 1: Crdd ear Feat ure();
br eak;
case 3: CdSet Feat ure();
br eak;
case 5: CndSet Address() ;
br eak;
case 6: CdGet Descri ptor();
br eak;
case 7: CndSet Descri ptor();
br eak;
case 8: CndGet Confi guration();
br eak;
case 9: CndSet Confi guration();
br eak;
case 10: CrdGet I nterface();
br eak;
case 11: CrdSet I nterface();
br eak;
case 12: CrdSynchFrane() ;
br eak;
defaul t: epOcsr = 0x44; // dear out pky ready with send stall
epOcsr2 = 1; /1 Stall all subsequent transactions
asn("nop"”);
asn("nop"”);

}

By using the second byte in the data packet sent by the USB Host, otherwise known as the bRequest, we
can determine what type of setup command is being administered. All the possible USB standard requests
as noted in the USB specification are listed above as well.

Y ou will notice that from the packet diagram shown earlier, that it isa 5, which correlated to being a Set
Address command. We then call the appropriate function to service this request which will be
CmdSetAddress() as seen below.

voi d CndSet Address() {

/* Load our new Device address */
usba = EPO_Header . wVal uelLow,

/* Set DATA END and OUT_PKT_RDY bit for EPO */

epOcsr = 0x48;
}
At this point, we have now determined what type of setup packet request has been administered to us.
Seeing that it is a Set Address command, all we need to do isinstruct our USB hardware to start accepting
datafor a new device address and respond back to the host that we understood the request and completed
the task.

The variable ushais actually a symboalic link to the M16C’s USB device address register. By writing a new
value to that register, the USB hardware will automatically start responding only to that new device
address. Y ou can see that this value is passed from the host in the lower byte of the wV/alue word (the 3"
byte in the 8-byte data stream). Cross-referencing that information to the setup packet in Figure 4, we can
see that our new device address will be 2.

Finally we set the DATA_END and OUT_PKT_RDY bhits for endpoint 0 in the M16C’s USB registers
which will cause the M16C USB hardware to send back a O-length data packet (also call aNULL Data
Packet) back to the host. Thiswill signify that we have satisfied its Change Address request. This can be
seen below.

Host

M30240 —=
00000001

Host & Sync ACK Null Data Packet
Q0000001 Ox4B | 2.50((11059

Figure5. Device Acknowledgement of Change Address Request

The host sends an IN Packet Request to us (as we are till sitting at address 0) in order to receive
conformation. As you can see, we respond correctly with aNULL data packet. The reason for the NULL
data packet is that according to the USB spec, a device may NAK an IN token from the host as long as it
wants. The host will simply keep sending IN tokens to that device until an answer is received. In this case,
the IN token is being used by the host to say, “ Are you ready to start accepting data at your new address?’
The M16C USB hardware will automatically send NAK packets back for us until our firmware has
completed that task and we have set the appropriate USB registers. So, the Null data packet is like saying,
“Yes, now | am ready, you may continue.”

An ACK is sent back from the host signifying that the response was received correctly.

Get Descriptor:

Therest of the enumeration processis similar to this. It is like a system of questions and commands from
the USB Host Controller for the newly attached device to follow. When the host is satisfied that it has
enough information to search for an appropriate driver, it will stop sending setup packets for Standard
Requests. At this point, the device is considered enumerated.

The GetDescription is another important setup command in the enumeration process. Unlike the first

GetDescriptor issued by the host at the very beginning, this time we are expected to pass the entire
descriptor back to the host. The setup packets are shown below.

Note we are using the
new address

M$BM)? Sync DATAO CRC16 EOP
oo000001 | oxc3 |80 (000 (0D00 00 @) 00 Joxoz2r[2.50]|| s

:ﬁ'ﬂi Max bytes of descriptor to send
Host —— ACK B ﬁ Device Descriptor Designator

DO000001 it Get Descriptor Command

Host

Figure 6. Get Device Descriptor Command from Host

Our firmware would then follow these steps...
voi d USB_I nt _Handl er () /1 USB Interrupt Sub Routine
|L(> voi d Par seEPOPacket () /1 EPO Control packet parsing function
LV voi d ProcessStandardReq() // USB Standard Request

ﬂ=€> voi d CndGet Descri ptor () /'l Service GetDescriptor command

In the CmdGetDescriptor() routine, we will then break up our 18-byte descriptor response into 8-byte data
packets. Only when the host issues an IN token to us may we then transfer the data back up to the host in
our firmware routine. We simply wait for the next IN packet to the hogt, fill up the endpoint O FIFO, then
set the IN_PKT_RDY bit for EPO in one of the M16C’s USB registers, and the hardware then transfer it up
to the host.

Shown below are the bus traces doing just that.

Host ENDP [s =s
00000001 | Ox06 2 0 |oxis|2.50(| 6
M30240 DATAL DATA CRC16 EOP
oooo0001 | oxpz2 |12 01 10 07 00 00 00 08 |oxeeeEE|2.50(| 10

EOP
00000001 | Ox4B |2.50|133

Host I=1e 3 [CRCS [EOP
00000001 | 0x96 2 0 |oxi5]|2.50|| 5
M30240 | DATAO DATA CRC16 EOP
00000001 | oxc3 |6C 05 07 80 00 01 01 02 Joxecee|2.50]|| 10

EOP
00000001 | Ox4B |2.50||226

Host
00000001 | 0Ox96 2 0 ox15 |2.50|| &
DATAL DATA [CRC16 [EOP
M30240
oo000001 | oxp2 |00 01 |oxFcFi|2.50(] 10

EOP
00000001 | O0x4B |2.50||147

Figure 7. The M 30240 Device Sending the 18-byte Device Descriptor 8 bytesat atime

This same procedure of breaking up the packets into 8-byte or less payloads will be done for various other
USB commands such as getting the Configuration Descriptor, String Descriptor, Interface Descriptors and
so on. Thisis because we told the USB Host Controller at the beginning that are MAX Packet size would
be 8 bytes.

