
www.nxsoftware.com OOP - 1 -

Windows programming with

www.nxsoftware.com OOP - 2 -

OOP

In this tutorial we discuss how to use basic Object Oriented

Programming (OOP) techniques in Purebasic, using nothing more than

the basic tools provided by Purebasic itself.

It is assumed that the reader is familiar with basic OOP techniques as

this tutorial does not seek to cover such ground. In particular, you will

need some familiarity with classes, objects, methods and member

variables (very simple really!)

This tutorial is for intermediate to advanced users of the Purebasic

language for it requires, in particular, a detailed knowledge and

understanding of Purebasic style pointers. Please make sure you know

how to use pointers before attempting this tutorial.

WHAT IS OOP? - 3 -

WHY USE OOP IN PUREBASIC? - 3 -

WHAT ARE PUREBASIC’S CAPABILITIES IN TERMS OF OOP? - 4 -

AN OUTLINE OF OUR FIRST CLASS… - 5 -

HOW NOT TO IMPLEMENT A CLASS IN ANY LANGUAGE! - 7 -

HOW TO IMPLEMENT A CLASS IN PUREBASIC – VIRTUAL TABLES! - 8 -

CREATING NEW INSTANCES OF OUR RECTANGLE CLASS - 11 -

INVOKING METHOD FUNCTIONS THROUGH AN OBJECT - 13 -

TESTING OUR RECTANGLE CLASS - 14 -

FINAL THOUGHTS… - 15 -

www.nxsoftware.com OOP - 3 -

What is OOP?

Object Oriented Programming encapsulates an entire programming

paradigm whereby applications and complex programming tasks are

broken down into ‘classes’ and ‘objects’ designed (as far as is possible)

to work independently of one another.

Each object contains all of the data central to its being and houses all of

the programming ‘logic’ required to work with that data and its own

internal structures etc. As far as the client application is concerned, an

object is a completely self-contained little ‘box’ which can be called

upon at any time to perform some task or other upon the data at its

core. The client application need not care about how the ‘object’

performs its allotted tasks, or in what form it stores its data etc. but

needs only know what the object can do and what information needs to

be given to the object.

Contrast this with the more ‘traditional’ procedural style of

programming in which the design of an application would typically be

driven by the tasks required by the application rather than by the data

it is charged with working upon. In OOP, ‘tasks’ and data are not

completely separate entities, but are intertwined in that an object will

carry both the code and the data required for it to fulfil its function.

This of course all adds nicely to code ‘reuse’ in that well designed

objects (or more precisely, ‘classes’) can be used in many different

applications (if appropriate).

Of course, this tutorial is not about to become bogged down in the

general theory of OOP and so our quick overview stops before it even

gets started! We are concerned purely with making use of OOP

techniques in Purebasic with the minimum of fuss and the maximum

gain!

Why use OOP in Purebasic?

There’s no real answer to this other than to say that, like most things in

life, it is a personal choice when deciding to use OOP or not?

Personally, I use what I would call ‘simple OOP’ (perfect for Purebasic!)

as an aid for program design and readability. Maintaining my OOP code

is one hell of a lot easier than maintaining my spaghettified non-OOP

code!

When creating complex libraries for other developers to consume, then

these days I will strive to offer up an OOP interface for the library (as

opposed to a flat c-style interface) as I find using an OOP based library

far easier than the alternative. Such libraries are generally self-

contained entities and thus, in my opinion, are screaming out for a

publicly accessible OOP interface to reinforce this fact. Again, personal

preference as maybe, but it is serving me well.

With more general applications (without any kind of public interface for

fellow developers) I will use OOP to wrap up data (and related

 For more

information

regarding OOP

theory, take a look at

Wikipedia or some

other detailed source.

www.nxsoftware.com OOP - 4 -

functionality) wherever possible. A 50000 line application is a damn

sight easier to follow this way – at least for me!

What are Purebasic’s capabilities in terms of OOP?

The first thing to note here is that Purebasic is NOT inherently an OOP

language; meaning that there is no way of simply defining a ‘class’ in

the same way that we can in, say, Visual Basic (or c++ or Java etc.)

Defining a class in Purebasic requires that we undertake a little extra

work ourselves, performing some of the tasks that an OOP language

such as VB would perform for us behind the scenes (so to speak).

Nothing too arduous mind!

When I say that there is ‘…no way of simply defining a class…’ then I

am being a little economical with the truth as there do exist a few ‘pre-

processors’ which do give this functionality to Purebasic. Such third-

party ‘tools’ as they exist are beyond the scope of this tutorial,

however, as they are not a part of the Purebasic product itself. We are

concerned here with what can be achieved with the official Purebasic

product as it is.

Rather than talking about what Purebasic cannot readily achieve in

terms of OOP support, let me instead list those things which can be

done without too much work; the most important things which give us

a clean and simple OOP ‘framework’ within which to work.

• methods (member functions) with a *this (or *self) parameter

• private variables (which, when combined with suitable ‘get’ and

‘set’ methods can double as ‘properties’)

• simple inheritance

• a simple means of over-riding methods

Very simple, very efficient and, need I say it, very effective!

Okay, there are no automatic constructors or destructors or virtual

methods and the developer is generally responsible for disposing of any

memory used in creating an object etc. but none of these

‘shortcomings’ need hinder the developer in any serious way.

Constructors and destructors can easily be simulated. Virtual methods

do not apply because we cannot cast derived objects as being an

instance of a base class anyhow (Purebasic does not allow explicit

casting of structured types) and as for garbage collection? Well, being

responsible for disposing of memory ourselves not only gives us the

greatest flexibility, but it does force a certain rigor upon our coding

which is never a bad thing in my opinion! Nope, this is the way I likes

it!

A developer coming from Visual Basic (say) might well scoff at the

apparent limitations to the OOP capabilities of Purebasic, but let me

just say that with simplicity comes clarity. Purebasic hides nothing and

does nothing to obfuscate the true nature of the language and of OOP

in particular. I repeat the fact that Purebasic is not an OOP language by

A ‘class’ is a

‘template’ for an

object containing

details on member

functions (methods),

and member

variables etc. Kind

of like a Purebasic

structure which lists

the member fields

belonging to a user-

defined data type etc.

www.nxsoftware.com OOP - 5 -

design; it’s just that it does offer the means to easily add a basic yet

very effective style of OOP to our programs (and the design of our

programs) which for my mind is a nice compromise between procedural

and ‘true’ OOP languages.

An outline of our first class…

Without further ado then; let us outline a basic class, it’s methods and

‘properties’ before turning our attention to just how we implement the

class in Purebasic.

I have decided upon a ‘rectangle’ class. One which encapsulates the

business of storing a rectangle’s length and width and allows us to

calculate it’s area and the length of a diagonal etc.

A simple enough class, but one for which the underlying

implementation will carry through to far more complex classes without

any noticeable increases in difficulty.

The following is not valid Purebasic code and is given for illustrative

purposes only :

CLASS Rectangle:

 ;Methods

 Area.d()

 Destroy()

 IsSquare.i()

 LengthOfDiagonal.d()

 ;Properties (Get/Set)

 length.d

 width.d

 ;Private data

 length.d

 width.d

ENDCLASS
Figure 1 – our basic rectangle class

There you are, a class with two properties and four methods. Indeed

the pseudo-code above could almost have come from a VB program

(almost, but not quite of course!)

Note in particular the Destroy() method which is used to free all

memory (as appropriate) whenever an instantiated class object is no

longer needed. In Purebasic it is vital that we remember to provide

some means of disposing of an object once it is no longer required etc.

 Remember

that Purebasic will

not automatically

destroy our objects

when they are no

longer in ‘scope’;

that is our job!

www.nxsoftware.com OOP - 6 -

Before discussing how to implement the above class in Purebasic, we

first make a slight alteration to the above pseudo-code just to bring it

more in line with the Purebasic way of thinking (and doing!)

You see in VB, for example, a class ‘property’ is treated rather specially

in that ‘GETting’ and ‘SETting’ occur almost transparently. We

unfortunately have no such luxury with Purebasic and instead have to

convert our properties into appropriate GET and SET methods :

CLASS Rectangle:

 ;Methods

 Area.d()

 Destroy()

 GetLength.d()

 GetWidth.d()

 IsSquare.i()

 LengthOfDiagonal.d()

 SetLength.i(newLength.d)

 SetWidth.i(newWidth.d)

 ;Private data

 length.d

 width.d

ENDCLASS
Figure 2 – our rectangle class modified for Purebasic

You see now why we have the two quantities listed above in the

‘Private data’ section?

So, how do we ‘translate’ the above pseudo-code into working

Purebasic code?

The answer is; ‘slowly, one step at a time!’

If the process as described in the sections below seem rather complex

and convoluted then rest assure they are!

Uhm, what I mean is that things may seem complex at first, but with

practice and some appreciation of the need for ‘virtual tables’ (which

will come with experience) you will soon see how simple it all is in

practice. Console yourself as well in the knowledge that the steps you

must take are simply those which the VB compiler (for example)

undertakes behind the scenes, hiding the programmer from the real

work behind OOP. I rather like the idea of knowing what occurs ‘under

the hood’ – makes me feel quite superior in a way! ☺

We begin with a false start!

 NOTE.

Arranging methods

alphabetically is just

my personal

preference!

www.nxsoftware.com OOP - 7 -

How NOT to implement a class in any language!

Okay we have our class design shown above in figure 2. How do we

translate our design into Purebasic code?

A first, and not unreasonable attempt, might be to wrap the class

within a Purebasic structure, using pointers to functions (or prototypes)

for our methods. This idea is shown in figure 3 below.

Structure RectangleObject

 *ptrArea

 *ptrDestroy

 *ptrGetLength

 *ptrGetWidth

 *ptrIsSquare

 *ptrLengthOfDiagonal

 *ptrSetLength

 *ptrSetWidth

 length.d

 width.d

EndStructure
Figure 3

Looks perfectly feasible and indeed this is perfectly valid Purebasic code

(try it and see!) It also seems to satisfy the requirement for

‘encapsulation’ laid down by the OOP paradigm in that the structure

combines the underlying rectangle object’s private data (length and

width) with the methods (functions) required to process that data as

appropriate.

With this code, we would ‘instantiate’ a rectangle class by simply

defining a variable of type ‘RectangleObject’, setting it’s function

pointers to point at some suitable functions and voila; we have a

rectangle object!

Indeed that is exactly what the following code does, try it!

Structure RectangleObject

 *ptrArea

EndStructure

Procedure.i MyAreaFunction()

 MessageRequester("Heyho!", "Hello from the Area() method!")

EndProcedure

MyObject.RectangleObject

 MyObject\ptrArea = @MyAreaFunction()

;Call the Area() method of the MyObject object.

 CallFunctionFast(MyObject\ptrArea)
Figure 4 – a rectangle ‘object’ with just a single method

 NOTE how

the pointers are used

in this code.

www.nxsoftware.com OOP - 8 -

So what is wrong with this – apart from the fact that anything using the

CallFunctionFast() function is messy of course? Why is this an example

of how not to implement an OOP class?

A good question indeed, and one with a mighty fine answer! Actually

two mighty fine answers! The simplest being the fact that no

programming language (at least no sensible one!) implements OOP in

quite this manner.

The more precise answer has to do with another OOP ‘buzz word’,

namely ‘inheritance’.

Suppose, for the sake of simplicity, we wish to create a new class based

upon our rectangle class; say ‘NewRectangle’, and to this new class we

wish to add an additional method, say MakeIntoSquare.i() which turns

the underlying rectangle into the largest square able to reside within

the original rectangle.

To do this we would need to adjust the above structure by adding an

extra function pointer (e.g. *ptrMakeIntoSquare) and this will cause the

structure to physically change. In particular, the offsets of the private

data fields (length and width) will invariably change and this is a big no

no for OOP! The problem being that by physically altering the above

structure, we can no longer claim that a NewRectangle object is also an

instance of a Rectangle object because it is using a different class

structure! This is undesirable because we wish all instances of

NewRectangle objects to still remain Rectangle objects as well!

So, how do we proceed? How should we translate our class design into

Purebasic code?

The answer to this follows in the next section.

How to implement a class in Purebasic – Virtual Tables!

To avoid beating around the bush, take a look at what is the correct

way to declare our rectangle class in Purebasic (correct in the sense

that this IS the method which underpins most OOP implementations –

such as COM).

Structure _RectangleClassTemplate

 *vTable

 length.d

 width.d

EndStructure
Figure 5 – a class template for the ‘Rectangle’ class

Now doesn’t that look one hell of a lot better?

The reason we have renamed this structure will become clear when we

introduce ‘interfaces’ later on in this tutorial.

 This, in OOP

speak, is an example

of ‘polymorphism’!

www.nxsoftware.com OOP - 9 -

Aside from the ‘fishy’ looking field named *vTable, we can clearly see

our private data members ‘length’ and ‘width’. We therefore wonder

what has happened to the function pointers?

Well, that is the purpose of the new *vTable field, which is simply a

pointer to a table whose entries point to our member functions,

allowing us to remove the function pointers themselves from the class

structure and which in turn, of course, solves the problem discussed

above with our first attempt at a class structure (figure 3).

Our new class structure, along with the *vTable field, is represented

quite nicely in the following diagram.

Figure 6 – showing how *vTable points to our ‘virtual table’ of function pointers

I will say right now that, when we have all of this in place, calling our

method functions is made very very simple (and painless) through the

use of what is called an ‘interface’, something which Purebasic offers

natively. The point is that we will not need to use the mucky

CallFunctionFast() and things are actually much simpler than they

probably look right now! ☺

Right, let us get this down in code.

Open a new Purebasic source file for holding the rectangle class

description and methods. Call it “rectangleClass.pbi”.

First type in our class template structure shown in figure 5 above.

Now for each of the eight methods listed in figure 2, type an empty

function. We will fill in the code later on after sorting out the virtual

table.

NOTE THAT each method function takes, as a first parameter, a *this

parameter. More precisely, it takes a pointer to the underlying

_RectangleClassTemplate structure.

For example, our Area() method, which takes no additional parameters,

will look like :

Structure _RectangleClassTemplate

 *vTable

 length.d

 width.d

EndStructure

*ptrArea

*ptrDestroy

*ptrGetLength

*ptrGetWidth

*ptrIsSquare

*ptrLengthOfDiagonal

*ptrSetLength

*ptrSetWidth

Area() method

Destroy() method

SetWidth() method

etc.

www.nxsoftware.com OOP - 10 -

Procedure.d RectangleClass_Area(*this._RectangleClassTemplate)

EndProcedure
Figure 7 – an empty Area() method implementation

NOTE that you can name the function anything you wish because we

will rarely call this method function explicitly. I have chosen a nicely

descriptive name of ‘RectangleClass_Area’ but you can use whatever

you like.

The full list of empty method functions is shown in figure 8.

Procedure.d RectangleClass_Area(*this._RectangleClassTemplate)

EndProcedure

Procedure RectangleClass_Destroy(*this._RectangleClassTemplate)

EndProcedure

Procedure.d RectangleClass_GetLength(*this._RectangleClassTemplate)

EndProcedure

Procedure.d RectangleClass_GetWidth(*this._RectangleClassTemplate)

EndProcedure

Procedure.i RectangleClass_IsSquare(*this._RectangleClassTemplate)

EndProcedure

Procedure.d

RectangleClass_LengthOfDiagonal(*this._RectangleClassTemplate)

EndProcedure

Procedure.i RectangleClass_SetLength(*this._RectangleClassTemplate,

newLength)

EndProcedure

Procedure.i RectangleClass_SetWidth(*this._RectangleClassTemplate,

newWidth)

EndProcedure
Figure 8 – empty method function implementations

www.nxsoftware.com OOP - 11 -

Now for the virtual table itself.

The virtual table (as indicated in figure 6) is simply a table of pointers

to our method functions and if, as is the case with our rectangle class,

the method functions are to be shared by all instances of our class,

then we can simply embed this table within a datasection.

Add the following code to the bottom of “rectangleClass.pbi”.

DataSection

 VTable_RectangleClass:

 Data.i @RectangleClass_Area()

 Data.i @RectangleClass_Destroy()

 Data.i @RectangleClass_GetLength()

 Data.i @RectangleClass_GetWidth()

 Data.i @RectangleClass_IsSquare()

 Data.i @RectangleClass_LengthOfDiagonal()

 Data.i @RectangleClass_SetLength()

 Data.i @RectangleClass_SetWidth()

EndDataSection
Figure 9 – our virtual table housed within a simple datasection

We now have our rectangle class in a ‘bare bones’ form!

Simple really. Sure more work than would be the case with VB, for

example, but then with VB you are not allowed to see these virtual

tables for yourself; and that is something which I find somewhat

disconcerting at times!

Aside from filling in the code for the as yet empty method functions, all

that remains now is the business of creating new instances of our

rectangle class and that of invoking our method functions etc. which

are the subjects of the next two sections.

Creating new instances of our rectangle class

It goes without saying that Purebasic has no NEW command in that we

cannot simply instantiate a new instance of our rectangle class with

something like :

 MyObject = NEW(RectangleObject)

Instead we have to create such a function ourselves which we shall add

to our “rectangleClass.pbi” source file.

The job of this function is simply to allocate memory for a

_RectangleClassTemplate structure and set the *vTable pointer to point

to our virtual table (within the datasection shown in figure 9).

This function also doubles as a ‘class constructor’ in that it is free to set

any properties/member variables as appropriate.

www.nxsoftware.com OOP - 12 -

Add the following code to your source file so that it sits just beneath

our structure definition.

Procedure.i NewRectangleObject(length=0, width=0)

 Protected *object._RectangleClassTemplate

 ;Attempt to allocate memory for a new class template.

 *object = AllocateMemory(SizeOf(_RectangleClassTemplate))

 If *object

 ;Make sure the *vTable field points to our virtual table.

 *object\vTable = ?VTable_RectangleClass

 ;Initialise the length and width.

 *object\length = length

 *object\width = width

 EndIf

 ;Return a pointer to our object.

 ProcedureReturn *object

EndProcedure
Figure 10 – our object ‘constructor’ function

The above function is the only function from the “rectangleClass.pbi”

source file which we would call directly. All of the (as yet empty)

method functions will be called through the newly created object itself.

After allocating the required memory and setting the virtual table etc.

the above function, if successful, returns a pointer to our newly created

object.

The only question now is exactly how do we call our object’s methods?

The pointer returned by the above function is a pointer to a structure

variable (which is just a chunk of memory) and offers us no way, as

yet, of invoking the object’s method functions.

The answer is the subject of the next section.

Before that, however, let us add code to the Destroy() and

GetLength(), GetWidth() methods.

Procedure RectangleClass_Destroy(*this._RectangleClassTemplate)

 ;All we need do here is free the memory previously allocated for this

object.

 FreeMemory(*this)

EndProcedure

Procedure.d RectangleClass_GetLength(*this._RectangleClassTemplate)

 ProcedureReturn *this\length

EndProcedure

Procedure.d RectangleClass_GetWidth(*this._RectangleClassTemplate)

 ProcedureReturn *this\width

EndProcedure
Figure 11 – code for three of our method functions

 It is always

sensible to add code

to your Destroy()

method as you code

the NewObject()

function etc.

www.nxsoftware.com OOP - 13 -

Note how we use the *this pointer to access the private member data

for the underlying object; e.g. *this\length etc.

Invoking method functions through an object

With our newly instantiated rectangle object to hand (as returned by

our NewRectangleObject() function) we simply need to know how to

invoke the method functions : Area(), Destroy(), … etc.

Well, this is the job of an interface which lies at the heart of most OOP

implementations.

An interface is, to all intents and purposes, a list of methods lying at

the heart of a virtual table. In the case of our rectangle class, it is a list

of the methods shown in figure 2.

In many ways an interface is simply the public face of our OOP class. It

is what our client applications refer to when creating new instances of

our class and it is what Purebasic itself uses when ploughing through

our object’s virtual table looking for the address of some method

function or other.

Indeed, an interface is the usual starting place when beginning the

code for a new class (as opposed to the approach forced on me by this

tutorial!)

So, to complete our class implementation, add the following code at the

top of your “rectangleClass.pbi” source file.

Interface RectangleObject

 Area.d()

 Destroy()

 GetLength.d()

 GetWidth.d()

 IsSquare.i()

 LengthOfDiagonal.d()

 SetLength.i(newLength)

 SetWidth.i(newWidth)

EndInterface
Figure 12 – our interface definition for the rectangle class

Note how each method prototype includes the return type, excludes the

*this parameter (which Purebasic kindly fills in automatically behind

the scenes) but includes all other parameters (such as newLength).

And we are done!!!

Let us test this by creating a couple of rectangle objects; setting their

dimensions and retrieving the dimensions.

 An interface is

actually a pointer

leading (indirectly)

to our virtual table.

www.nxsoftware.com OOP - 14 -

Testing our rectangle class

Create a new Purebasic source file and call it “test.pb”.

Add the following code which simply creates two rectangle objects; sets

the first to have a length of 10 units and the second with a length of 20

units. We then use the GetLength() method to retrieve these different

lengths.

Finally, we use the Destroy() method to dispose of both objects when

we no longer require their services.

XIncludeFile "rectangleClass.pbi"

;Define two rectangle objects.

;Note that we declare each variable to match the interface type :

'RectangleObject' in this case.

 rect1.RectangleObject

 rect2.RectangleObject

;Create the two objects. First with length and width = 10, and the

second with length and width = 20.

 rect1 = NewRectangleObject(10, 10)

 rect2 = NewRectangleObject(20, 20)

;Retrieve the lengths.

 length.d = rect1\GetLength()

 Debug "Rectangle 1 has length " + StrD(length, 2) + " units."

 length.d = rect2\GetLength()

 Debug "Rectangle 2 has length " + StrD(length, 2) + " units."

 ;Destroy the objects when finished.

 rect1\Destroy()

 rect2\Destroy()
Figure 13 – “test.pb”

Very nice if I say so myself! ☺

Note how this example illustrates just how the two aforementioned

objects each have their own member data in that each has it’s own

length and width values etc.

Accompanying this document is a completed “rectangleClass.pbi” file

(with all method functions completed).

The final section of this document gives a few additional pointers and

notes etc.

www.nxsoftware.com OOP - 15 -

Final thoughts…

We have obviously only scratched the surface here of what is possible

using OOP with Purebasic. Granted, we do have to roll up our sleeves

and involve ourselves with the business of setting up our virtual tables

etc. but these are very simple constructs and easily maintained.

Of course, since Purebasic is not specifically an OOP language, it offers

little assistance with things like garbage collection of objects or, for

example, reference counting (where appropriate) or even in copying

objects.

For example, consider the following code where we instantiate two

rectangle objects and then attempt to place a copy of rect2 in rect1.

XIncludeFile "rectangleClass.pbi"

;Define two rectangle objects.

;Note that we declare each variable to match the interface type :

'RectangleObject' in this case.

 rect1.RectangleObject

 rect2.RectangleObject

;Create the two objects. First with length and width = 10, and the

second with length and width = 20.

 rect1 = NewRectangleObject(10, 10)

 rect2 = NewRectangleObject(20, 20)

;Attempt to copy rect2

 rect1 = rect2
Figure 14

Problems problems!

First, note that we did not destroy the original rectangle object pointed

to by the rect1 variable. This of course results in an unreported

memory leak.

Second, we might wonder what the actual result of the assignment

rect1 = rect2 is? Does it perform a ‘deep copy’ of the underlying object

memory or does it simply make rect1 point at the rect2 object (a

shallow copy)?

Ah, you guessed it; it is indeed a shallow copy and without any kind of

reference counting!

Before the assignment, each variable contains a pointer to it’s

underlying object memory and so, from Purebasic’s point of view, each

variable is simply a 32-bit (or 64-bit) integer. The assignment then

results in the 32-bits from variable rect2 being copied into rect1. It

therefore does not perform a ‘deep copy’ of the underlying object

memory.

This does mean, for example, that issuing the command

rect1\Destroy() will effectively invalidate both rect1 and rect2 in one

foul swoop!

 A ‘deep copy’

requires the

developer to take

steps to copy the

underlying physical

memory etc.

www.nxsoftware.com OOP - 16 -

The point is that we do need to take a little care when thinking about

an object’s lifetime etc.

Of course, with the ability to synthesise and replicate many OOP

techniques with Purebasic, only a complete idiot would claim that we

have access to the full OOP toolkit. For example, abstract classes have

little meaning for Purebasic and an attempt to implement multiple

inheritance would likely send one completely bananas! ☺

No, what we have is a very ‘clean’ and simple means of applying the

OOP methodology to our projects, but that is very much in keeping with

the ‘Purebasic way’!

And I say again that if OOP is your thing, but you are new to virtual

tables and interfaces, then do not despair, for by the time you have

created a couple of classes of your own, you will appreciate just how

easy it all is to implement. That or your money back by George! ☺

Interfaces.

As noted above, the public face of any class we create is the interface.

In terms of using ready made classes, the interface really is the ‘be all

and end all’.

For example, any application wishing to use our rectangle class will

need just two things. Firstly, it needs access to our

NewRectangleObject() function (in order to create new instances of the

rectangle class), and secondly it needs a copy of the appropriate

interface definition so that the Purebasic compiler can locate each

method function in the underlying virtual table etc.

And that’s all the application would need.

You see how this can lead to the creation of OOP dll’s (for example) in

Purebasic; something which I have done on more than one occasion.

(That way, the dll is secure from prying eyes since no amount of poking

and peeking will ever reveal the method names and/or details etc.

because the methods are not exported!)

Even Visual Basic will represent it’s classes through an interface type

mechanism.

One thing to note with interfaces is that the order of the method

functions as listed between the Interface / EndInterface statements

must match exactly the order of the function pointers in the virtual

table. In the case of our rectangle class, our interface listing must

match the order of the function addresses listed in the datasection.

Private member variables.

With our basic rectangle class example, each object had it’s own copies

of the length and width member variables. No rectangle object can

access the member data belonging to another instance of the rectangle

class (unless it has access to the object variable itself).

www.nxsoftware.com OOP - 17 -

Now, it goes without saying that you are of course free to use as many

different types of member fields as you see fit and of any data type

going. Integers, floats, pointers, other objects, static arrays, strings, …

Anything!

The only problem (generally affecting dynamic string fields) is one of

garbage collection. If, as with the rectangle class, you create new

instances of your classes by using AllocateMemory() (as opposed to

using a linked list for example), then you are left with the problem of

not only freeing this block memory when disposing of individual

objects, but of also disposing of the individual member fields in cases

when Purebasic will not do this for you!

In the case of our rectangle class, all of our member fields were simple

integers (length and width) and were freed automatically when we

freed the object memory itself because they formed part of that

memory.

However, in the case of pointers and strings (which are pointers

anyhow) Purebasic has no way of freeing the additional memory

pointed to by the pointers! (This is because Purebasic pointers are not

‘strongly typed’ and can point to any chunk of memory and for any

purpose!) The upshot is that we must take steps to free any additional

memory ourselves. In the case of pointers, no problem; we just issue

additional FreeMemory() commands (assuming that we allocated the

underlying memory ourselves that is). In the case of dynamic strings,

however, we have to cheat!!! See the Purebasic forums for details on

how to free dynamic structure strings.

