by Stephen Rodriguez.

GEOMETAL. ..ottt ettt e st e st eeaaee e 2
Package, licence and terms Of USe..........ccccueeeeeeeciiiieeeeiiiieeeeeciieeeeeeveee e 2
To use “SmartErase.pbi” within a Purebasic program.................ccccueeeeeeunee. 2
What causes flicker and how can we combat it?.............cccoveeeeevceiinniecinnueenns 2
What does SmartErase do and how does it WOTK?cceeeeeecveiiieeicieneenennn, 3
Applying SmartErase to a Window/Control.ccoccceevveiiniiienniecennnennn 4
Removing individual child controls from the exclusion.c...ccceuu.... 5
Notes on USING SMATTETASE.ccccccuuvveeeiiiiieeeeeciiiiieeeee e e eeescvaeeeeee e e e s e 6

Page 1

General.

SmartErase.pbi is a Purebasic source code include file containing a small Windows utility to
assist in reducing flicker when dynamically resizing controls in response to the user
resizing an application window etc.

This software is written in Purebasic 4.3 and has been tested on Win XP and Vista. It will
run only on Windows platforms.

Package, licence and terms of use.
This package contains all the relevant source files, six demo programs and this very short
instruction manual.

The software contained within this package is free to use in any project (commercial or
otherwise) or as a learning tool. I do, however, assert my moral right to be identified as
the creator of this software (except where acknowledgements are given) and thus ask that
due acknowledgement is given within any product/creation in which my source code forms
a part. Use the software for any purpose whatsoever.

This software is provided on an as is basis, with no warranty either given or implied,
meaning that I am not liable for any damage caused by its use (or misuse!) nor by
damage caused by other programs based on its source code.

To use “SmartErase.pbi” within a Purebasic program.
Simply ensure that the following command resides within your Purebasic source code file
before any attempt is made to make use of this utility :

XincludeFile "SmartErase.pbi”

That's it.

What causes flicker and how can we combat it?
When the user resizes an application window, flicker generally results from the program
dynamically resizing controls to keep pace with the changes in the window etc.

In these cases, the vast majority of flicker is caused by controls erasing their contents
prior to repainting.

Imagine a container gadget, for example, containing a few buttons. When the container is
resized (through code) following the user resizing the main application window, the
container will generally erase it's own contents by filling it’s client area with some colour or
other. When it does this, the child button controls will appear to flicker as they are
momentarily blanked out during this repeating operation. This is of course more noticeable
when you increase the number of such containers and the number of child controls etc.

Certain kinds of controls (e.g. Purebasic Frame3Dgadgets and PanelGadgets) exacerbate
this further through their very nature and the ways in which they operate.

Removing this flicker completely would be a matter for double-buffering (off-screen
rendering), but with the Windows OS, our options in this regard are very limited indeed.

Page 2

Sure we can double-buffer our own drawing operations and even our own custom controls,
but double-buffering the pre-built common controls is an altogether different proposition.

No, the best we can usually hope for is to be able to take steps to reduce this flicker to far
more manageable levels and so the question is generally not one of removing all flicker,
but of reducing it, and even this can be a lot of work on occasion.

Strategies for reducing flicker stretch from the sublime to the ridiculous on occasion; from
simply setting a few Window's styles (and hoping for the best) to subclassing and ‘hooking
individual control’s painting and erasing processes. It can be a very involved and time
consuming business indeed!

4

And that is where SmartErase steps in with it’s size thirteen hiking boots to kick those
flickeringly annoying controls firmly into touch!

It is not very sophisticated (at least nowhere near as sophisticated as my first attempt at
this, but which failed to deal with themed buttons and the like!) But it is damn effective in
a lot of cases!

What does SmartErase do and how does it work?

First, SmartErase (like the Purebasic SmartWindowRefresh() command - which never
seems to work for me anyhow!) is not guaranteed to give good results in any individual
situation. It is a simple tool which may or may not help with individual applications or
indeed individual windows etc.

What I will say is that in my tests it is proving very effective indeed! There is a little bit of
trial and error involved (as you will see from the demo programs) but, if like me you find
flickering to be very annoying, then it is well worth a shot - you have nothing to lose!

Myself, I will generally combine this tool with other techniques (generally more
specialised) as appropriate depending on the underlying situation etc.

I am finding, for example, that this tool has only a limited success with Purebasic panel-
gadgets, which is of no surprise really as nothing else seems to work with these beasties
thanks to the themed nature of this swine! Not even the #WS_EX_COMPOSITED style
works. However, this tool can certainly reduce flicker even with these gadgets.

So, how exactly does SmartErase work?

Well, first you would generally apply ‘SmartErase’ to a parent window/control (e.g. a
container gadget) whose child gadgets flicker inordinately when dynamically resized etc.
There are occasions when you might apply SmartErase to other controls as well (e.g.
Frame3Dgadgets), but we’ll come to that later.

Once SmartErase has been applied to a window or control, then all erasing of that
window/control is handled by the SmartErase library itself. Its default behaviour is to
simply erase only those parts of the window/control which do not house any child controls.
That is, all child controls are excluded from the erasing process. *

" You may think that this is the same as applying the #WS_CLIPCHILDREN window style to the window/control,
but this is not the case. However, in combination with this style, SmartErase could prove even more effective in
certain circumstances (it could also prove totally ineffective as well!)

Page 3

You can refine this behaviour by excluding not just the regions containing child controls,
but also any regions occupied by any overlapping (non-child) controls etc. Further, you
can opt to remove all erasing from the window/control which is useful in cases where the
window’s client area is completely covered by child controls etc.

There you are; simple, and, some would argue, pretty crude. However, the proof of the
pudding is of course in the eating and I would advise you to take a quick peek at the demo
programs to judge for yourself just how effective this can be!

Tech note.

I did originally attempt to simply adjust the window/control’s update region to remove all
child controls and whilst this worked very well in principal, it could not deal with themed
buttons and the like and in fact it completely ruined their appearance! Hence my falling
back to what is a far more simplistic approach. Still, the simplest ideas are often the best!

Applying SmartErase to a window/control.
To apply SmartErase to a window or control simply use the SetSmartErase() function
which has the following prototype :

Procedure.i SetSmartErase(hWnd [, color [, flag]])
with the following parameters :

hwnd
the Window’s handle of the window/control in question (usually a parent
control)

color
Optional.

The background colour of the window/control in question.
The default value is #SmartErase_ USESTANDARDWINDOWCOLOR
which will use the default window color.

flag
Optional.

One of the following values :

#SmartErase_ NOERASEATALL
Remove all erasing from the window/control. Useful if the
window/control is completely covered by child controls etc.

#SmartErase_ REMOVESMARTERASE
Remove SmartErase from the window/control.

The following values determine whether only the regions occupied by
child controls are excluded from the erasing process or, in addition,
whether other overlapping controls (not just child controls) are also
excluded :

#SmartErase_ MAXERASELEVEL
All overlapping regions are excluded.

Page 4

#SmartErase ERASELEVELO
Only regions occupied by child controls are excluded.
This is the default setting.

#SmartErase ERASELEVEL1
All regions occupied by child controls and all Childs of the
most immediate parent are excluded (siblings).

#SmartErase_ ERASELEVEL?2
As for #SmartErase_ERASELEVEL1 but with the addition of all
Childs of the grand-parent etc.

etc. up to #SmartErase_ERASELEVELG.

NOTE that SmartErase does not count any window/control whose
client area completely shadows that of our window/control when
looking for overlapping controls etc.

A non-zero return from this function means that the operation completed successfully.

Removing individual child controls from the exclusion.

Now that you understand how SmartErase works, you may find that there are occasions
when, having applied SmartErase to a parent window, for example, that certain child
controls are misbehaving because they are being excluded from their parents erasing
process. This might effect toolbars in particular.

For this you can opt to remove any such child-controls from the exclusion process by
simply setting a window property as follows :

SetProp_(ChildhWnd, #SmartErase_IGNORECHILD, 1)
This means that, having applied SmartErase to the parent of ChildhWnd, the region
occupied by ChildhWnd will be included (not removed) when the parent is erased etc. This
may mean of course that this region will appear to flicker, but then you would have good
reason for doing this anyhow!
As I say, this may be useful in particular for toolbars.
You will of course have to remove this window property yourself before destroying the
control as Windows does not do this automatically. SmartErase will also not remove this
property automatically as doing so would require SmartErase to subclass the control in
question which is, to be honest, overkill in such circumstances.

To remove the property simply issue the command :

RemoveProp_(ChildhWnd, #SmartErase_IGNORECHILD)

Page 5

Notes on using SmartErase.

1. Using SmartErase to excess can slow down an application’s responsiveness in terms
of it's GUI etc.

In particular, any GUI containing say hundreds of controls would probably have to
use SmartErase sparingly; say on a couple of controls only.

2. The default flag for use with the SetSmartErase() function, namely
#SmartErase ERASELEVELO will be the most commonly used. All other values from
#SmartErase_ MAXERASELEVEL onwards will of course slow things down
accordingly as the library will then have to search through more controls etc.

Thus far I have had to use one of these constants once only with a Frame3Dgadget

(which are poorly behaved at the best of times!)

3. Applying SmartErase to a parent window/control (e.g. a container gadget) whose
child gadgets flicker inordinately when dynamically resized etc. is a bit of a hit and
miss affair. For example, with the Frame3Dgadget demo program I found myself
having to apply SmartErase to the Frame3D itself (as well as it's parent window!)

Just be prepared for some trial and error!

4. I reiterate that this library may or may not alleviate any flickering problems related
to any individual application. You will ideally need to combine this utility with other
techniques as well.

Stephen Rodriguez.

Page 6

